Skip to main content
Log in

Mantel–Haenszel estimators of a common odds ratio for multiple response data

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

For a two-way contingency table, odds ratios are commonly used to describe the relationships between the row and column variables. In the ordinary case cells are mutually exclusive, that is each subject must fit into one and only one cell. However, in many surveys respondents may select more than one outcome category, commonly referred to as multiple responses. We discuss model-based and Mantel–Haenszel estimators of an assumed common odds ratio for several \(2\times c\) tables, where the two rows refer to independent groups and the c columns to multiple responses, treating the multiple responses as an extension of the multinomial sampling model. We derive new dually consistent (co)variance estimators for the Mantel–Haenszel odds ratio estimators and show their performance in a simulation study and illustrate the estimators on a linguistic data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agresti A (2013) Categorical data analysis, 3rd edn. Wiley series in probability and statistics. Wiley, New Jersey

    MATH  Google Scholar 

  • Agresti A, Liu I (2001) Strategies for modeling a categorical variable allowing multiple category choices. Sociol Method Res 29(4):403–434

    Article  MathSciNet  Google Scholar 

  • Agresti A, Liu IM (1999) Modeling a categorical variable allowing arbitrarily many category choices. Biometrics 55(3):936–943

    Article  MATH  Google Scholar 

  • Bergsma W, Croon M, Hagenaars J (2009) Marginal models for dependent, clustered, and longitudinal categorical data. Springer, New York

    MATH  Google Scholar 

  • Bilder CR, Loughin TM (2001) On the first-order Rao–Scott correction of the Umesh–Loughin–Scherer statistic. Biometrics 57(4):1253–1255

    Article  MathSciNet  MATH  Google Scholar 

  • Bilder CR, Loughin TM (2002) Testing for conditional multiple marginal independence. Biometrics 58(1):200–208

    Article  MathSciNet  MATH  Google Scholar 

  • Bilder CR, Loughin TM (2004) Testing for marginal independence between two categorical variables with multiple responses. Biometrics 60(1):241–248

    Article  MathSciNet  MATH  Google Scholar 

  • Bilder CR, Loughin TM (2009) Modeling multiple-response categorical data from complex surveys. Canad J Stat Rev Canadienne De Statistique 37(4):553–570

    Article  MathSciNet  MATH  Google Scholar 

  • Bilder CR, Loughin TM, Nettleton D (2000) Multiple marginal independence testing for pick any/c variables. Commun Stat Simul Comput 29(4):1285–1316

    Article  MATH  Google Scholar 

  • Davison A, Hinkley D (1997) Bootstrap methods and their application. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Oxford

    Book  MATH  Google Scholar 

  • Decady YJ, Thomas DR (2000) A simple test of association for contingency tables with multiple column responses. Biometrics 56(3):893–896

    Article  MATH  Google Scholar 

  • Greenland S (1989) Generalized Mantel–Haenszel estimators for K 2\(\times \)J tables. Biometrics 45(1):183–191

    Article  MathSciNet  MATH  Google Scholar 

  • Gu PY, Hu G, Zhang LJ (2005) Investigating language learner strategies among lower primary school pupils in Singapore. Lang Educ 19(4):281–303

    Article  Google Scholar 

  • Gu Y (2002) Gender, academic major, and vocabulary learning strategies of Chinese EFL learners. RELC J 33(1):35–54

    Article  Google Scholar 

  • Haber M (1985) Maximum-likelihood methods for linear and log-linear models in categorical-data. Comput Stat Data Anal 3(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Keogh RH, Cox DR (2014) Case–control studies, vol 4. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kleinbaum D, Kupper L, Morgenstern H (1982) Epidemiologic research: principles and quantitative methods. Lifetime Learning Publications, Belmont

    Google Scholar 

  • Lang JB (1996) Maximum likelihood methods for a generalized class of log-linear models. Ann Stat 24(2):726–752

    Article  MathSciNet  MATH  Google Scholar 

  • Lang JB, Agresti A (1994) Simultaneously modelling joint and marginal distributions of multivariate categorical responses. J Am Stat Assoc 89(426):625–632

    Article  MATH  Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal data-analysis using generalized linear-models. Biometrika 73(1):13–22

    Article  MathSciNet  MATH  Google Scholar 

  • Liu I (2003) Describing ordinal odds ratios for stratified r \(\times \) c tables. Biometrical J 45(6):730–750

    Article  MathSciNet  Google Scholar 

  • Liu I, Suesse T (2008) The analysis of stratified multiple responses. Biometrical J 50(1):135–149

    Article  MathSciNet  Google Scholar 

  • Liu IM, Agresti A (1996) Mantel–Haenszel-type inference for cumulative odds ratios with a stratified ordinal response. Biometrics 52(4):1223–1234

    Article  MathSciNet  MATH  Google Scholar 

  • Loughin TM, Scherer P (1998) Testing for association in contingency tables with multiple column responses. Biometrics 54:630–637

    Article  MATH  Google Scholar 

  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Mickey RM, Elashoff RM (1985) A generalization of the Mantel–Haenszel estimator of partial association for 2\(\times \)J\(\times \)K-tables. Biometrics 41(3):623–635

    Article  MathSciNet  MATH  Google Scholar 

  • Nurminen M (1981) Asymptotic efficiency of general non-iterative estimators of common relative risk. Biometrika 68(2):525–530

    Article  MathSciNet  MATH  Google Scholar 

  • Sen PK, Singer JM (1993) Large sample methods in statistics: an introduction with applications. Chapman & Hall, New York

    Book  MATH  Google Scholar 

  • Suesse T, Liu I (2012) Mantel–Haenszel estimators of odds ratios for stratified dependent binomial data. Comput Stat Data Anal 56:2705–2717

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas DR, Decady YJ (2004) Testing for association using multiple response survey data: approximate procedures based on the Rao–Scott approach. Int J Test 4(1):43–59

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their helpful comments that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Suesse.

Appendices

Dual consistency of \({{\varPsi }}^*_{jh}\)

The estimator

$$\begin{aligned} {\hat{\theta }}_h =\frac{ \sum _k X_{h|ak} \frac{n_{bk}}{N_k}}{ \sum _k X_{h|bk} \frac{n_{ak}}{N_k} } \end{aligned}$$

which converges to

$$\begin{aligned} \frac{ \sum _k \pi _{h|ak} \frac{n_{bk}n_{ak}}{N_k}}{ \sum _k \pi _{h|bk} \frac{n_{ak}n_{bk}}{N_k} }&= \frac{ \sum _k \exp (\gamma _{ak}+\alpha _{hk}+\beta _{ah} ) \frac{n_{bk}n_{ak}}{N_k}}{ \sum _k \exp (\gamma _{bk}+\alpha _{hk}+\beta _{bh} ) \frac{n_{ak}n_{bk}}{N_k} }\\&=\frac{ \exp (\beta _{ah}) \sum _k \exp (\gamma _{ak}+\alpha _{hk} ) \frac{n_{bk}n_{ak}}{N_k}}{ \exp (\beta _{bh})\sum _k \exp (\gamma _{bk}+\alpha _{hk} ) \frac{n_{ak}n_{bk}}{N_k} }\\&= \exp (\beta _{ah}-\beta _{bh}) \frac{ \sum _k \exp (\gamma _{ak}+\alpha _{hk} ) \frac{n_{bk}n_{ak}}{N_k} }{\sum _k \exp (\gamma _{bk}+\alpha _{hk} ) \frac{n_{ak}n_{bk}}{N_k} } \end{aligned}$$

Under model (1\(^*\)), the term on the right hand side becomes 1, and dual consistency applies because \(\theta _h= \exp (\beta _{ah}-\beta _{bh})\). However under model (1), this is not the case because of the \(\gamma _{ik}\) terms. This means that the estimator \({\hat{\theta }}_h\) converges to \(\theta _h \times c\), where c is a constant.

Now \({\hat{\theta }}_j\) converges under model (1) to \(\theta _j \times c\), therefore \({{\varPsi }}^*_{jh}={\hat{\theta }}_j/{\hat{\theta }}_h\) converges to \(\frac{\theta _j \times c}{\theta _h \times c}={\varPsi }_{jh}\), and dual consistency even applies under model (1).

Dual consistency of covariance estimator of two MH relative risk estimators

Showing that \(\text {Cov}(L_j,L_h)\) is consistent is equivalent to showing that \(\text {Cov}({\hat{\theta }}_j,{\hat{\theta }}_h)\) is consistent by application of delta method to log-function. Hence we need to show that

$$\begin{aligned} \widehat{\text {Cov}({\hat{\theta }}_j,{\hat{\theta }}_h)}=\frac{\frac{n_{bk}^2}{N_k^2}(X_{jh|ak}-d_{jh|ak})+{\hat{\theta }}_j{\hat{\theta }}_h\frac{n_{ak}^2}{N_k^2}(X_{jh|bk}-d_{jh|bk})}{C_{j|ba} C_{h|ba} } \end{aligned}$$

is consistent for \(\text {Cov}({\hat{\theta }}_j,{\hat{\theta }}_h)\).

We can show that

$$\begin{aligned} \lim \text {Cov}({\hat{\theta }}_j-\theta _j,{\hat{\theta }}_h-\theta _h)&=\lim \text {Cov}\left( \frac{C_{j|ab}-\theta _j C_{j|ba}}{C_{j|ba}},\frac{C_{h|ab}-\theta _h C_{h|ba}}{C_{h|ba}}\right) \\&=\frac{\sum _k \text {Cov}(c_{j|ab}-\theta _j c_{j|ba},(c_{h|ab}-\theta _h c_{h|ba}))}{\lim C_{j|ba}\lim C_{h|ba} } \end{aligned}$$

and

$$\begin{aligned} \text {Cov}(c_{j|ab}-\theta _j c_{j|ba},c_{h|ab}-\theta _h c_{h|ba})= & {} \frac{n_{ak}n_{bk}}{N_k^2}\left( n_{bk} (\pi _{jh|ak}-\pi _{j|ak}\pi _{h|ak})\right. \\&\left. +\, n_{ak}\theta _j \theta _h (\pi _{jh|bk}-\pi _{j|bk}\pi _{h|bk})\right) \end{aligned}$$

which can be estimated under both limiting models by

$$\begin{aligned} \frac{n_{bk}^2}{N_k^2}(X_{jh|ak}-d_{jh|ak})+{\hat{\theta }}_j{\hat{\theta }}_h\frac{n_{ak}^2}{N_k^2}(X_{jh|bk}-d_{jh|bk}) \end{aligned}$$

with \(d_{jh|ak}=(X_{j|ak}X_{h|ak}-X_{jh|ak})/n_{ak}'\) and \(n_{ak}'=n_{ak}-1\).

Dual consistency of ordinary MH estimator

1.1 Sparse data limiting model

For the sparse data limiting model, the number of observations per stratum is bounded (\(O(N_k)=1\)) and K approaches infinity.

From \(\pi _{j|1k}\pi _{h|2k}= {\varPsi }_{jh}\pi _{h|1k}\pi _{j|2k}\), which follows from the assumption of a common odds ratio, and Eq. (11), we derive

$$\begin{aligned} \mathbb {E}\omega _{jh|k} = \mathbb {E}(c_{jh|k}-{\varPsi }_{jh}c_{hj|k})&= \mathbb {E}c_{jh|k}-{\varPsi }_{jh} \mathbb {E}c_{hj|k} \\&= \{ \mathbb {E}X_{j|1k} \mathbb {E}X_{h|2k}-{\varPsi }_{jh} \mathbb {E}X_{h|1k} \mathbb {E}X_{j|2k} \}/N_k \\&= \{ n_{1k}n_{2k} \pi _{j|1k}\pi _{h|2k} - {\varPsi }_{jh} n_{1k}n_{2k}\pi _{h|1k}\pi _{j|2k} \}/ N_k \\&= \{n_{1k}n_{2k} ( \pi _{j|1k}\pi _{h|2k} - \pi _{j|1k}\pi _{h|2k} )\}/N_k=0 \end{aligned}$$

We can write

$$\begin{aligned} {\hat{{\varPsi }}}_{jh}-{\varPsi }_{jh}&= \frac{\sum _{k=1}^K c_{jh|k}-{\varPsi }_{jh}c_{hj|k}}{\sum _{k=1}^K c_{hj|k}} = \frac{\sum _{k=1}^K (c_{jh|k}-{\varPsi }_{jh}c_{hj|k})/K}{\sum _{k=1}^K c_{hj|k}/K}&\end{aligned}$$
(13)
$$\begin{aligned}&= \frac{\sum _{k=1}^K \omega _{jh|k} /K}{\sum _{k=1}^K c_{hj|k}/K} = \frac{{\varOmega }_{jh} /K}{ C_{hj}/K}&. \end{aligned}$$
(14)

with with \(\omega _{jh|k}:=c_{jh|k}-{\varPsi }_{jh}c_{hj|k}\) and \({\varOmega }_{jh}:=\sum _k\omega _{jh|k}\).

The term \(c_{jh|k}\) is a bounded random variable under model II, hence, the variance of \(C_{jh}\) is \(o(K^2)\) and Chebyshev’s weak law of large numbers states \(({\varOmega }_{jh}-\mathbb {E}{\varOmega }_{jh})/K \)\( {\rightarrow }_p0\). Since \(\mathbb {E}\omega _{jh|k}=0\), the expression \(({\varOmega }_{jh}-\mathbb {E}{\varOmega }_{jh})/K \)\( {\rightarrow }_p0\) reduces to \({\varOmega }_{jh}/K {\rightarrow }_p0\), that is, the numerator of \({\hat{{\varPsi }}}_{jh}-{\varPsi }_{jh}\) converges to zero in probability. Applying the Chebyshev weak law of large numbers again to the denominator yields

$$\begin{aligned} \sum _{k=1}^K c_{jh|k}/K \overset{K \rightarrow \infty }{\longrightarrow }_p \lim _{K \rightarrow \infty } \sum _{k=1}^K \mathbb {E}(c_{jh|k})/K<\infty . \end{aligned}$$

This limit is finite and nonzero. Thus, we conclude \({\hat{{\varPsi }}}_{jh}-{\varPsi }_{jh}{\rightarrow }_p0\) by Slutsky’s theorem.

1.2 Large stratum limiting model

Let us consider the case \(N\rightarrow \infty \) with \(N\alpha _{ik}=n_{ik}\) and \(0<\alpha _{ik}<1\), that is, as N approaches infinity the number of subjects \(n_{ik}\), for all rows i and strata k, also approaches infinity. Note \(N_k=n_{1k}+n_{2k}=N\sum _{i}\alpha _{ik}\).

We have

$$\begin{aligned} C_{jh} /N&=\sum _{k=1}^K c_{jh|k} /N =\sum _{k=1}^K X_{j|1k} X_{h|2k} /(N_k N) \nonumber \\&=\sum _{k=1}^K \frac{n_{1k}n_{2k}}{N_kN} \frac{X_{j|1k}}{n_{1k}} \frac{X_{h|2k}}{n_{2k}}=\sum _{k=1}^K \frac{n_{1k}n_{2k}}{NN}\frac{N}{N_k} \frac{X_{j|1k}}{n_{1k}} \frac{X_{h|2k}}{n_{2k}} \\ \overset{ N \rightarrow \infty }{\longrightarrow }_p&\sum _{k=1}^K \alpha _{1k}\alpha _{2k}\left( \sum _i \alpha _{ik}\right) ^{-1} \pi _{j|1k} \pi _{h|2k} =\sum _{k=1}^K \left( \sum _i \alpha _{ik}^{-1}\right) ^{-1} \pi _{j|1k} \pi _{h|2k}. \end{aligned}$$

Therefore

$$\begin{aligned} {\hat{{\varPsi }}}_{jh}&=\frac{C_{jh}}{C_{hj}}=\frac{C_{jh}/N}{C_{hj}/N} \overset{N \rightarrow \infty }{\longrightarrow }_p \frac{\sum _{k=1}^K \left( \sum _i \alpha _{ik}^{-1}\right) ^{-1} \pi _{j|1k} \pi _{h|2k}}{\sum _{k=1}^K \left( \sum _i \alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k} \pi _{j|2k}}\\&={\varPsi }_{jh}\frac{\sum _{k=1}^K \left( \sum _i \alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k} \pi _{j|2k}}{\sum _{k=1}^K \left( \sum _i \alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k} \pi _{j|2k}} ={\varPsi }_{jh}. \end{aligned}$$

Asymptotic covariances

1.1 Sparse-data limiting model

Let \(\text {Var}^a(\cdot )\) and \(\text {Cov}^a(\cdot )\) refer to the asymptotic variance and covariance. From above \({\hat{{\varPsi }}}_{jh}-{\varPsi }_{jh}=\frac{{\varOmega }_{jh} /K}{ C_{hj}/K}=\frac{\sum _k \omega _{jh|k} /K}{ C_{hj}/K}\).

First by independence of rows \(\text {Cov}({\varOmega }_{jh},{\varOmega }_{ts})=\sum _{k=1}^K \text {Cov}(\omega _{jh|k},\omega _{ts|k})\). Note that \( \mathbb {E}|\omega _{jh|k}-\mathbb {E}\omega _{jh|k}|^3\)\(=\mathbb {E}|\omega _{jh|k}|^3\)\(=O(1)\) , because \(c_{jh|k}\) is a bounded random variable under the sparse-data limiting model. By setting \(\delta =1\), we conclude from the Multivariate Central Limit Theorem (Sen and Singer 1993, p.123) that \({K}^{-1/2}\)\(({\varOmega }_{jh},\)\({\varOmega }_{ts})=\)\(\sqrt{K}({\varOmega }_{jh}/K,\)\({\varOmega }_{ts}\)  / K) converges to a zero mean multivariate normal distribution with covariance \(\lim _{K\rightarrow \infty }\)\(\frac{1}{K}\)\(\sum _{k=1}^K \text {Cov}(\omega _{jh|k},\omega _{ts|k})\), by noting that \(\mathbb {E}\omega _{jh|k}=0\) and \(\text {Cov}(\omega _{jh},\)\(\omega _{ts})\) exists. We conclude the asymptotic covariance between \({\varOmega }_{jh}\) and \({\varOmega }_{ts}\) is \(\lim _{K\rightarrow \infty } K \cdot \text {Cov}^a({\varOmega }_{jh} ,{\varOmega }_{ts})=\lim _{K\rightarrow \infty }\)\(\frac{1}{K}\)\(\sum _{k=1}^K \text {Cov}(\omega _{jh|k},\omega _{ts|k})\).

Therefore by the delta method, Slutsky’s theorem, Eq. (13), and using that the denominator terms \(\lim _{K}\mathbb {E}C_{hj}/K\) are finite we obtain

$$\begin{aligned}&\lim _{K\rightarrow \infty }K\cdot \text {Cov}^a(\log {\hat{{\varPsi }}}_{jh} , \log {\hat{{\varPsi }}}_{ts})\\&=1/({\varPsi }_{jh}{\varPsi }_{ts}) \lim _{K\rightarrow \infty } K \cdot \text {Cov}^a({\hat{{\varPsi }}}_{jh} ,{\hat{{\varPsi }}}_{ts}) \\&=1/({\varPsi }_{jh}{\varPsi }_{ts}) \frac{\lim _{K\rightarrow \infty } K \cdot \text {Cov}^a({\varOmega }_{jh} ,{\varOmega }_{ts})}{(\lim _{K}\mathbb {E}C_{hj}/K)( \lim _{K}\mathbb {E}C_{st} /K )}\\&=1/({\varPsi }_{jh}{\varPsi }_{ts}) \frac{\lim _{K\rightarrow \infty } 1/K \cdot \sum _k \text {Cov}(\omega _{jh|k},\omega _{ts|k}) }{(\lim _{K}\mathbb {E}C_{hj}/K)( \lim _{K}\mathbb {E}C_{st} /K )}\\ \end{aligned}$$

for arbitrary indices \(j,h,s,t \in \{1,\dots ,c \}\) with \(j\ne h\) and \(s\ne t\).

Now we obtain the following variance

$$\begin{aligned} \text {Var}(\omega _{jh|k})&= v_{jh|k}^1-2{\varPsi }_{jh} v_{jh|k}^2+{\varPsi }_{jh}^2 v_{jh|k}^3 \end{aligned}$$

and covariances

$$\begin{aligned} \text {Cov}(\omega _{jh|k},\omega _{js|k})&= v_{jhs|12,k} - {\varPsi }_{jh} v_{jh,js|k} - {\varPsi }_{js} v_{js,jh|k} + {\varPsi }_{jh}{\varPsi }_{js}v_{jhs|21,k}\\ \text {Cov}(\omega _{jh|k},\omega _{ts|k})&= v_{jt,hs|k}-{\varPsi }_{jh} v_{ht,js|k} - {\varPsi }_{ts}v_{js,ht|k} + {\varPsi }_{jh}{\varPsi }_{ts}v_{hs,st|k} \end{aligned}$$

with

$$\begin{aligned} v_{jh|k}^1&=\frac{n_{1}n_{2}}{N^2} \left( \pi _{j|1}\pi _{h|2} + n_1'\pi _{j|1}^2\pi _{h|2} +n_2'\pi _{j|1}\pi _{h|2}^2\right) \\ v_{jh|k}^2&=\frac{n_{1}n_{2}}{N^2}\left( n_1'\pi _{j|1}\pi _{h|1} \pi _{jh|2}+ n_2'\pi _{j|2}\pi _{h|2}\pi _{jh|1}+\pi _{jh|1}\pi _{jh|2}\right) \\ v_{jh|k}^3&=\frac{n_{1}n_{2}}{N^2} \left( \pi _{h|1}\pi _{j|2} + n_1'\pi _{h|1}^2\pi _{j|2} +n_2'\pi _{h|1}\pi _{j|2}^2\right) \\ v_{jh,ts|k}&=\frac{n_{1}n_{2}}{N^2} \left( \pi _{jh|1}\pi _{ts|2}+n_1'\pi _{j|1}\pi _{h|1}\pi _{ts|2}+n_2' \pi _{jh|1}\pi _{t|2}\pi _{s|2}\right) \\ v_{jhs|abk}&=\frac{n_{1}n_{2}}{N^2} v_{jhs|abk}^A+v_{jhs|abk}^B \; (a\ne b) \\ v_{jhs|abk}^A&=\frac{n_{1}n_{2}}{N^2} \pi _{hs|bk}\left( \pi _{j|ak}+n_a'\pi _{j|ak}^2 \right) \; (a\ne b)\\ v_{jhs|abk}^B&=\frac{n_{1}n_{2}}{N^2} n_b'\pi _{j|ak}\pi _{h|bk}\pi _{s|bk} \; (a\ne b). \end{aligned}$$

The subscript k is often suppressed for convenience only.

The (co)variance estimators were constructed in such a way that they converge exactly to the asymptotic (co)variance(s). We can also express \(U_{jhs}\) as \(U_{jhs}=U_{jhs}^{add}\) omitting \(U_{jhs}^{old}\) but only if \({\hat{v}}_{jhs|abk}^B\) is amended to \({\hat{v}}_{jhs|abk}^B = \frac{1}{N_k^2}X_{j|ak}\{ X_{h|bk}X_{s|bk}-X_{hs|bk} \}\). Then for the covariance estimators we have \(\sum _k {\hat{v}}_k/K \overset{K\rightarrow \infty }{\longrightarrow } \sum _k \mathbb {E}{\hat{v}}_k/K = \lim _K \sum _k v_k/K\) and \(\sum _k c_{jh|k}/K \overset{K\rightarrow \infty }{\longrightarrow }\sum _k \mathbb {E}c_{jh|k}/K\) by Chebyshev’s weak law of large numbers.

1.2 Large-stratum limiting model

By the delta method, the large stratum limiting variance is

$$\begin{aligned}&\lim _{N\rightarrow \infty } N \cdot \text {Var}^a(\log {\hat{{\varPsi }}}_{jh})\\&=\dfrac{\sum _k \frac{\alpha _1^2\alpha _2}{(\sum _i \alpha _{ik})^2} \left\{ \pi _{j|1}^2\pi _{h|2}+{\varPsi }_{jh}^2 \pi _{h|1}^2\pi _{j|2}- 2{\varPsi }_{jh} \pi _{j|1} \pi _{h|1} \pi _{jh|2} \right\} }{\left( \sum _k \left( \sum _i\alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k}\pi _{j|2k}\right) ^2 } \nonumber \\&\quad +\, \dfrac{\sum _k \frac{\alpha _1\alpha _2^2}{(\sum _i \alpha _{ik})^2} \left\{ \pi _{j|1}\pi _{h|2}^2 +{\varPsi }_{jh}^2 \pi _{h|1}\pi _{j|2}^2 - 2{\varPsi }_{jh} \pi _{jh|1}\pi _{j|2}\pi _{h|2} \right\} }{\left( \sum _k \left( \sum _i\alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k}\pi _{j|2k}\right) ^2 } \end{aligned}$$

and the limiting covariances are

$$\begin{aligned}&\lim _{N\rightarrow \infty } N\cdot \text {Cov}^a(\log {\hat{{\varPsi }}}_{jh},\log {\hat{{\varPsi }}}_{js})\\&=\dfrac{\sum _k \frac{\alpha _1^2\alpha _2}{(\sum _i \alpha _{ik})^2} \left\{ \pi _{j|1}^2\pi _{hs|2}- {\varPsi }_{jh} \pi _{j|1}\pi _{h|1}\pi _{js|2} -{\varPsi }_{js}\pi _{j|1}\pi _{s|1}\pi _{jh|2} +{\varPsi }_{jh}{\varPsi }_{js}\pi _{h|1}\pi _{s|1}\pi _{j|2} \right\} }{\left( \sum _k \left( \sum _i\alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k}\pi _{j|2k}\right) ^2 }\\&\quad +\,\dfrac{\sum _k \frac{\alpha _1\alpha _2^2}{(\sum _i \alpha _{ik})^2} \{ \pi _{j|1}\pi _{h|2}\pi _{s|2}-{\varPsi }_{jh}\pi _{jh|1}\pi _{j|2}\pi _{s|2} -{\varPsi }_{js}\pi _{js|1}\pi _{j|2}\pi _{h|2} +{\varPsi }_{jh}{\varPsi }_{js}\pi _{hs|1}\pi _{j|2}^2\} }{\left( \sum _k \left( \sum _i\alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k}\pi _{j|2k}\right) ^2 } \end{aligned}$$
$$\begin{aligned}&\lim _{N\rightarrow \infty } N\cdot \text {Cov}^a(\log {\hat{{\varPsi }}}_{jh},\log {\hat{{\varPsi }}}_{ts})\\&=\dfrac{\sum _k \frac{\alpha _1^2\alpha _2}{(\sum _i \alpha _{ik})^2} \left\{ \pi _{j|1}\pi _{t|1}\pi _{hs|2} - {\varPsi }_{jh} \pi _{h|1}\pi _{t|1}\pi _{js|2} - {\varPsi }_{ts} \pi _{j|1}\pi _{s|1}\pi _{ht|2} + {\varPsi }_{jh}{\varPsi }_{ts} \pi _{h|1}\pi _{s|1}\pi _{jt|2}\right\} }{\left( \sum _k \left( \sum _i\alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k}\pi _{j|2k}\right) ^2 }\\&\quad +\,\dfrac{\sum _k \frac{\alpha _1\alpha _2^2}{(\sum _i \alpha _{ik})^2} \{\pi _{jt|1}\pi _{h|2}\pi _{s|2} - {\varPsi }_{jh} \pi _{ht|1}\pi _{j|2}\pi _{s|2} - {\varPsi }_{ts} \pi _{js|1}\pi _{h|2}\pi _{t|2} + {\varPsi }_{jh}{\varPsi }_{ts} \pi _{hs|1}\pi _{j|2}\pi _{t|2} \} }{\left( \sum _k \left( \sum _i\alpha _{ik}^{-1}\right) ^{-1} \pi _{h|1k}\pi _{j|2k}\right) ^2 }. \end{aligned}$$

The estimators were constructed such that

$$\begin{aligned} \lim _{N\rightarrow \infty } N \cdot \text {Var}^a(\log {\hat{{\varPsi }}}_{jh})&=\lim _N N \cdot U_{jhh}\\ \lim _{N\rightarrow \infty } N \cdot \text {Cov}^a(\log {\hat{{\varPsi }}}_{jh},\log {\hat{{\varPsi }}}_{js})&=\lim _{N\rightarrow \infty } N \cdot U_{jhs}\\ \lim _{N\rightarrow \infty } N \cdot \text {Cov}^a(\log {\hat{{\varPsi }}}_{jh},\log {\hat{{\varPsi }}}_{ts})&=\lim _{N\rightarrow \infty } N \cdot U_{jhts}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suesse, T., Liu, I. Mantel–Haenszel estimators of a common odds ratio for multiple response data. Stat Methods Appl 28, 57–76 (2019). https://doi.org/10.1007/s10260-018-0429-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-018-0429-z

Keywords

Navigation