Skip to main content
Log in

The Tempered Discrete Linnik distribution

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

We introduce a new family of integer-valued distributions by considering a tempered version of the Discrete Linnik law. The proposal is actually a generalization of the well-known Poisson–Tweedie law. The suggested family is extremely flexible since it contains a wide spectrum of distributions ranging from light-tailed laws (such as the Binomial) to heavy-tailed laws (such as the Discrete Linnik). The main theoretical features of the Tempered Discrete Linnik distribution are explored by providing a series of identities in law, which describe its genesis in terms of mixture Poisson distribution and compound Negative Binomial distribution—as well as in terms of mixture Poisson–Tweedie distribution. Moreover, we give a manageable expression and a suitable recursive relationship for the corresponding probability function. Finally, an application to scientometric data—which deals with the scientific output of the researchers of the University of Siena—is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aalen OO (1992) Modelling heterogeneity in survival analysis by the compound Poisson distribution. Ann Appl Probab 2:951–972

    Article  MathSciNet  MATH  Google Scholar 

  • Baccini A, Barabesi L, Cioni M, Pisani C (2014) Crossing the hurdle: the determinants of individual scientific performance. Scientometrics 101:2035–2062

    Article  Google Scholar 

  • Baccini A, Barabesi L, Stracqualursi L (2016) Random variate generation and connected computational issues for the Poisson–Tweedie distribution. Comput Stat 31:729–748

    Article  MathSciNet  MATH  Google Scholar 

  • Barabesi L, Cerasa A, Cerioli A, Perrotta D (2016a) A new family of tempered distributions. Electron J Stat 10:3871–3893

    Article  MathSciNet  MATH  Google Scholar 

  • Barabesi L, Cerasa A, Perrotta D, Cerioli A (2016b) Modelling international trade data with the Tweedie distribution for anti-fraud purposes. Eur J Oper Res 248:1031–1043

    Article  MATH  Google Scholar 

  • Barabesi L, Pratelli L (2014a) Discussion of “On simulation and properties of the Stable law” by L. Devroye and L. James. Stat Methods Appl 23:345–351

    Article  MathSciNet  MATH  Google Scholar 

  • Barabesi L, Pratelli L (2014b) A note on a universal random variate generator for integer-valued random variables. Stat Comput 24:589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Barabesi L, Pratelli L (2015) Universal methods for generating random variables with a given characteristic function. J Stat Comput Simul 85:1679–1691

    Article  MathSciNet  Google Scholar 

  • Burrell QL (2014) The individual author’s publication-citation process: theory and practice. Scientometrics 98:725–742

    Article  Google Scholar 

  • Burrell QL, Fenton MR (1993) Yes, the GIGP really does work—and is workable!. J Am Soc Inf Sci 44:61–69

    Article  Google Scholar 

  • Charalambides CA (2005) Combinatorial methods in discrete distributions. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Charalambides CA, Singh J (1988) A review of the stirling numbers, their generalizations and statistical applications. Commun Stat Theor Methods 17:2533–2595

    Article  MathSciNet  MATH  Google Scholar 

  • Christoph G, Schreiber K (1998) The generalized Linnik distributions. In: Kahle W, von Collani E, Franz J, Jensen U (eds) Advances in stochastic models for reliability, quality and safety. Birkhäuser, Boston, pp 3–18

    Chapter  Google Scholar 

  • Christoph G, Schreiber K (2001) Positive Linnik and discrete Linnik distributions. In: Balakrishnan N, Ibragimov IA, Nevzorov VB (eds) Asymptotic methods in probability and statistics with applications. Birkhäuser, Boston, pp 3–17

    Chapter  Google Scholar 

  • Devroye L (1993) A triptych of discrete distribution related to the stable law. Stat Probab Lett 18:349–351

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye L (2009) Random variate generation for exponentially and polynomially tilted stable distributions. ACM Trans Model Comput Simul 19:18

    Article  Google Scholar 

  • Devroye L, James L (2014) On simulation and properties of the stable law. Stat Methods Appl 23:307–343

    Article  MathSciNet  MATH  Google Scholar 

  • Dowling M, Nakamura M (1997) Estimating parameters for discrete distributions via the empirical probability generating function. Commun Stat Simul Comput 26:301–313

    Article  MATH  Google Scholar 

  • El-Shaarawi AH, Zhu R, Joe H (2011) Modelling species abundance using the Poisson–Tweedie family. Environmetrics 22:152–164

    Article  MathSciNet  Google Scholar 

  • Favaro S, Nipoti B (2014) Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James. Stat Methods Appl 23:365–369

    Article  MathSciNet  MATH  Google Scholar 

  • Gerber HU (1991) From the generalized gamma to the generalized negative binomial distribution. Insur Math Econ 10:303–309

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Nat Acad Sci USA 102:16569–16572

    Article  MATH  Google Scholar 

  • Hofert M (2011a) Sampling exponentially tilted stable distributions. ACM Trans Model Comput Simul 22:3

    Article  MathSciNet  Google Scholar 

  • Hofert M (2011b) Efficiently sampling nested Archimedean copulas. Comput Stat Data Anal 55:57–70

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (1986) Survival models for heterogeneous populations derived from stable distributions. Biometrika 73:387–396

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P, Lee MT, Whitmore GA (1997) Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. Biometrics 53:1225–1238

    Article  MathSciNet  MATH  Google Scholar 

  • Huillet TE (2016) On Mittag-Leffler distributions and related stochastic processes. J Comput Appl Math 296:181–211

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson NL, Kemp AW, Kotz S (2005) Univariate discrete distributions, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Jose KK, Uma P, Lekshmi VS, Haubold HJ (2010) Generalized Mittag-Leffler distributions and processes for applications in astrophysics and time series modeling. In: Haubold HJ, Mathai AM (eds) Proceedings of the Third UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science. Springer, New York

  • Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3:697–707

    Article  MathSciNet  MATH  Google Scholar 

  • Klebanov LB, Slámová L (2015) Tempered distributions: does universal tempering procedure exist?, arXiv:1505.02068v1 [math.PR]

  • Lijoi A, Mena RH, Prünster I (2007) Bayesian nonparametric estimation of the probability of discovering new species. Biometrika 94:769–786

    Article  MathSciNet  MATH  Google Scholar 

  • Lijoi A, Prünster I (2014) Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James, Stat Methods Appl 23:371–377

    Article  MathSciNet  MATH  Google Scholar 

  • Linnik YV (1962) Linear forms and statistical criteria II, translations in mathematical statistics and probability 3. American Mathematical Society, Providence

    Google Scholar 

  • Marcheselli M, Baccini A, Barabesi L (2008) Parameter estimation for the discrete stable family. Commun Stat Theor Methods 37:815–830

    Article  MathSciNet  MATH  Google Scholar 

  • Pakes AG (1995) Characterization of discrete laws via mixed sums and Markov branching processes. Stoch Process Appl 55:285–300

    Article  MathSciNet  MATH  Google Scholar 

  • Pratelli L, Baccini A, Barabesi L, Marcheselli M (2012) Statistical analysis of the Hirsch index. Scand J Stat 39:681–694

    Article  MathSciNet  MATH  Google Scholar 

  • Rachev ST, Kim YS, Bianchi ML, Fabozzi FJ (2011) Financial models with Lévy processes and volatility clustering. Wiley, New York

    Book  MATH  Google Scholar 

  • Rosínski J (2007) Tempering stable processes. Stoch Process Appl 117:677–707

    Article  MathSciNet  MATH  Google Scholar 

  • Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sibuya M (1979) Generalized hypergeometric, digamma and trigamma distributions. Ann Inst Stat Math 31:373–390

    Article  MathSciNet  MATH  Google Scholar 

  • Steutel FW, van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7:893–899

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu R, Joe H (2009) Modelling heavy-tailed count data using a generalized Poisson-inverse Gaussian family. Stat Probab Lett 79:1695–1703

    Article  MathSciNet  MATH  Google Scholar 

  • Zolotarev VM (1986) One-dimensional stable distributions, translations of mathematical monographs 65. American Mathematical Society, Providence

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Luca Pratelli for many useful advices. We also thank two anonymous reviewers for their careful reading of our manuscript and their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Barabesi.

Appendix

Appendix

Result 1. We provide a result on the p.f. of a family of r.v.’s displaying a very general type of p.g.f., which encompasses (13)—and hence (3), (10), (16) and (19)—as special cases. Let us consider an integer-valued r.v. X with p.g.f. given by

$$\begin{aligned} g_X(s)=\varphi (\alpha +\beta (1-\phi s)^\gamma ), \ s\in [0,1], \end{aligned}$$

where \(\alpha ,\beta ,\gamma ,\phi \in \mathbb {R}\) are parameters in such a way that \(\phi \in [0,1]\), while \(\varphi :\mathbb {R}\mapsto [0,1]\) is a suitable function. As an example, the p.g.f. (19) of the r.v. \(X_{TDL}\) is obtained by setting \(\alpha =1-\mathrm{sgn}(a)bd(1-c)^a\), \(\beta =\mathrm{sgn}(a)bd\), \(\phi =c\) and \(\gamma =a\) and by assuming that \(\varphi (x)=x^{-1/d}\). As a further example, the p.g.f. (10) of the r.v. \(X_{TDS}\) is achieved by setting \(\alpha =\mathrm{sgn}(a)b(1-c)^a\), \(\beta =-\mathrm{sgn}(a)b\), \(\phi =c\) and \(\gamma =a\), while \(\varphi (x)=\exp (x)\). If the function \(\varphi \) is analytic in a neighbourhood of \((\alpha +\beta )\), for \(k\in \mathbb {N}\) the p.f. \(p_X\) of the r.v. X may be expressed as

$$\begin{aligned} \begin{aligned} p_X(k)&=\frac{1}{k!}\,\left. \frac{d^kg_X(s)}{ds^k}\right| _{s=0}=\frac{1}{k!} \left. \frac{d^k\varphi (\alpha +\beta +\beta ((1-\phi s)^\gamma -1)}{ds^k}\,\right| _{s=0}\\&=\frac{1}{k!}\,\sum _{m=0}^k\frac{\beta ^m}{m!}\,\left. \frac{d^m \varphi (s)}{ds^m}\right| _{s=\alpha +\beta }\,\left. \frac{d^k((1-\phi s)^\gamma -1)^m}{ds^k}\right| _{s=0} \end{aligned} \end{aligned}$$

and, by means of the Binomial Theorem, it follows that

$$\begin{aligned} \begin{aligned} p_X(k)&=\frac{1}{k!}\,\sum _{m=0}^k\frac{\beta ^m}{m!}\left. \frac{d^m \varphi (s)}{ds^m}\right| _{s=\alpha +\beta }\,\sum _{j=0}^m(-1)^{m-j}\left( {\begin{array}{c}m\\ j\end{array}}\right) \left. \frac{d^k(1-\phi s)^{\gamma j}}{ds^k}\right| _{s=0}\\&=\frac{(-\phi )^k}{k!}\,\sum _{m=0}^k\beta ^m\,\left. \frac{d^m\varphi (s)}{ds^m} \right| _{s=\alpha +\beta }\,\frac{1}{m!}\,\sum _{j=0}^m(-1)^{m-j}\left( {\begin{array}{c}m\\ j\end{array}}\right) ( \gamma j)_k\\&=\frac{(-\phi )^k}{k!}\,\sum _{m=0}^k\beta ^m\,\left. \frac{d^m\varphi (s)}{ds^m} \right| _{s=\alpha +\beta }\,C(k,m,\gamma ), \end{aligned} \end{aligned}$$

where the generalized factorial coefficient and the falling factorial are defined in Sect. 4.

Result 2. On the basis of expression (19), it turns out that

$$\begin{aligned} g_{X_{TDL}}'(s)=(1+ \mathrm{sgn}(a)bd((1-cs)^a-(1-c)^a))^{-1}|a|bc(1-cs)^{a-1}g_{X_{TDL}}(s), \end{aligned}$$

from which

$$\begin{aligned} (K(1-cs)+(1-K)(1-cs)^{1-a})g_{X_{TDL}}'(s)=\frac{Kac}{d}\,g_{X_{TDL}}(s), \end{aligned}$$
(27)

where K is defined in Sect. 4. It is worth noting that

$$\begin{aligned} (1-cs)^{1-a}=1-\sum _{k=1}^\infty r_ks^k, \end{aligned}$$

where in turn the \(r_k\)’s are defined in Sect. 4. Hence, from (27) it follows that

$$\begin{aligned} \left( 1-Kcs-(1-K)\,\sum _{k=1}^\infty r_ks^k\right) \,\sum _{k=1}^\infty kp_{X_{TDL}}(k)s^{k-1}=\frac{Kac}{d}\,\sum _{k=0}^\infty p_{X_{TDL}}(k)s^k. \end{aligned}$$
(28)

Since

$$\begin{aligned}&\left( 1-Kcs-(1-K)\,\sum _{k=1}^\infty r_ks^k\right) \,\sum _{k=1}^\infty kp_{X_{TDL}}(k)s^{k-1}=\\&\sum _{k=0}^\infty \left( (k+1)p_{X_{TDL}}(k+1)-Kckp_{X_{TDL}}(k)-(1-K)\sum _{j=1}^kjr_{k-j+1}p_{X_{TDL}}(j)\right) s^k \end{aligned}$$

equating the coefficients of the powers of s in expression (28) the recursive relation (26) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabesi, L., Becatti, C. & Marcheselli, M. The Tempered Discrete Linnik distribution. Stat Methods Appl 27, 45–68 (2018). https://doi.org/10.1007/s10260-017-0386-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-017-0386-y

Keywords

Navigation