Skip to main content
Log in

Covariance tapering for multivariate Gaussian random fields estimation

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In recent literature there has been a growing interest in the construction of covariance models for multivariate Gaussian random fields. However, effective estimation methods for these models are somehow unexplored. The maximum likelihood method has attractive features, but when we deal with large data sets this solution becomes impractical, so computationally efficient solutions have to be devised. In this paper we explore the use of the covariance tapering method for the estimation of multivariate covariance models. In particular, through a simulation study, we compare the use of simple separable tapers with more flexible multivariate tapers recently proposed in the literature and we discuss the asymptotic properties of the method under increasing domain asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apanasovich T, Genton M, Sun Y (2012) A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. J Am Stat Assoc 97:15–30

    MathSciNet  Google Scholar 

  • Arima S, Cretarola L, Lasinio GJ, Pollice A (2012) Bayesian univariate space-time hierarchical model for mapping pollutant concentrations in the municipal area of taranto. Stat Methods Appl 21:75–91

    Article  MathSciNet  Google Scholar 

  • Askey R (1973) Radial characteristic functions. Technical report, Research Center, University of Wisconsin

  • Bevilacqua M, Gaetan C (2015) Comparing composite likelihood methods based on pairs for spatial gaussian random fields. Stat Comput 25:877–892

    Article  MathSciNet  Google Scholar 

  • Bevilacqua M, Gaetan C, Mateu J, Porcu E (2012) Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach. J Am Stat Assoc 107:268–280

    Article  MathSciNet  MATH  Google Scholar 

  • Bevilacqua M, Hering A, Porcu E (2015) On the flexibility of multivariate covariance models: comment on the paper by Genton and Kleiber. Stat Sci 30:167–169

    Article  MathSciNet  Google Scholar 

  • Daley D, Porcu E, Bevilacqua M (2015) Classes of compactly supported covariance functions for multivariate random fields. Stoch Environ Res Risk Assess 29:1249–1263

    Article  Google Scholar 

  • Du J, Zhang H, Mandrekar VS (2009) Fixed-domain asymptotic properties of tapered maximum likelihood estimators. Ann Stat 37:3330–3361

    Article  MathSciNet  MATH  Google Scholar 

  • Eidsvik J, Shaby BA, Reich BJ, Wheeler M, Niemi J (2014) Estimation and prediction in spatial models with block composite likelihoods. J Comput Graph Stat 23:295–315

    Article  MathSciNet  Google Scholar 

  • Fontanella L, Ippoliti L (2003) Dynamic models for space-time prediction via karhunen-loeve expansion. Stat Methods Appl 12:61–78

    Article  MathSciNet  MATH  Google Scholar 

  • Furrer R, Sain SR (2010) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. J Stat Softw 36:1–25

    Article  Google Scholar 

  • Furrer R, Genton MG, Nychka D (2013) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15:502–523

    Article  MathSciNet  Google Scholar 

  • Furrer R, Bachoc F, Du J (2015) Asymptotic properties of multivariate tapering for estimation and prediction. ArXiv e-prints arXiv:1506.01833

  • Genton M, Kleiber W (2015) Cross-covariance functions for multivariate geostatistics. Stat Sci 30:147–163

    Article  MathSciNet  Google Scholar 

  • Gneiting T (2002) Compactly supported correlation functions. J Multivar Anal 83:493–508

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167–1177

    Article  MathSciNet  Google Scholar 

  • Horn RA, Johnson CR (1991) Top matrix anal. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kaufman CG, Schervish MJ, Nychka DW (2008) Covariance tapering for likelihood-based estimation in large spatial data sets. J Am Stat Assoc 103:1545–1555

    Article  MathSciNet  MATH  Google Scholar 

  • Matheron G (1962) Traité de géostatistique appliquée, Tome 1. Mémoires du BRGM, n. 14, Technip, Paris

  • Padoan S, Bevilacqua M (2015) Analysis of random fields using CompRandFld. J Stat Softw 63:1–27

    Article  Google Scholar 

  • Porcu E, Daley D, Buhmann M, Bevilacqua M (2013) Radial basis functions with compact support for multivariate geostatistics. Stoch Environ Res Risk Assess 27:909–922

    Article  Google Scholar 

  • Shaby B, Ruppert D (2012) Tapered covariance: Bayesian estimation and asymptotics. J Comput Graph Stat 21:433–452

    Article  MathSciNet  Google Scholar 

  • Stein M, Chi Z, Welty L (2004) Approximating likelihoods for large spatial data sets. J R Stat Soc B 66:275–296

    Article  MathSciNet  MATH  Google Scholar 

  • Stein M, Chen J, Anitescu M (2012) Difference filter preconditioning for large covariance matrices. SIAM J Matrix Anal Appl 33:52–72

    Article  MathSciNet  MATH  Google Scholar 

  • Stein M, Chen J, Anitescu M (2013) Stochastic approximation of score functions for gaussian processes. Ann Appl Stat 7:1162–1191

    Article  MathSciNet  MATH  Google Scholar 

  • Vecchia A (1988) Estimation and model identification for continuous spatial processes. J R Stat Soc B 50:297–312

    MathSciNet  Google Scholar 

  • Vetter P, Schmid W, Schwarze R (2015) Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem. Stat Methods Appl

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Zastavnyi V, Trigub R (2002) Positive definite splines of special form. Sbornik Math 193:1771–1800

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bevilacqua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevilacqua, M., Fassò, A., Gaetan, C. et al. Covariance tapering for multivariate Gaussian random fields estimation. Stat Methods Appl 25, 21–37 (2016). https://doi.org/10.1007/s10260-015-0338-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0338-3

Keywords

Navigation