Skip to main content
Log in

Hypotheses testing about the drift parameter in linear stochastic differential equation driven by stable processes

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Applebaum D (2004) Lévy Processes and Stochastic Calculus, 2nd edn., Cambridge University Press, Cambridge

  • Barndorff-Nielsen OE, Shephard N (2001) Ornstein–Uhlenbeck-based models and some of their uses in financial economics (with discussion). J R Stat Soc Ser B 63:167–241

    Article  MathSciNet  MATH  Google Scholar 

  • Bibby BM, Sørensen M (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1:17–39

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York

  • Bishwal JPN (2001) Accuracy of normal approximation for the maximum likelihood estimator and Bayes estimators in the Ornstein–Uhlenbeck process using random normings. Stat Probab Lett 52:427–439

    Article  MathSciNet  MATH  Google Scholar 

  • Bishwal JPN (2006) Rates of weak convergence of approximate minimum contrast estimators for the discretely observed Ornstein–Uhlenbeck process. Stat Prob Lett 76:1397–1409

    Article  MathSciNet  MATH  Google Scholar 

  • Bishwal JPN (2008) Parameter estimation in stochastic differential equations. Lecture notes in mathematics, (1923), Springer, Berlin

  • Bishwal JPN, Bose A (2001) Rates of convergence of approximate maximum likelihood estimators in the Ornstein–Uhlenbeck process. Comput Math Appl 42:23–38

    Article  MathSciNet  MATH  Google Scholar 

  • Çinlar E, Pinsky M (1971) A stochastic integral in storage theory. Zeit Wahrscheinlich Verwaltung Gebiete 17:227–240

    Article  MathSciNet  MATH  Google Scholar 

  • Csörgő M, Révész P (1981) Strong approximations in probability and statistics. Akademia Kiado, Academic Press, Budapest, New York

    MATH  Google Scholar 

  • Ditlevsen PD (1999a) Observation of \(\alpha \)-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26:1441–1444

    Article  Google Scholar 

  • Ditlevsen PD (1999b) Anomalous jumping in a double-well potential. Phys Rev E 60:172–179

    Article  Google Scholar 

  • Ferebe B (1982) Tests with parabolic boundary for the drift of a Wiener process. Ann Stat 10:882–894

    Article  MathSciNet  Google Scholar 

  • Galtchouk LI, Nobelis PP (1999) Sequential variational testing hypotheses on the Wiener process under delayed observations. Stat Inference Stoch Process 2:31–56

    Article  MathSciNet  MATH  Google Scholar 

  • Harison V (1996) Drift estimation of a certain class of diffusion processes from discrete observation. Comput Math Appl 31:121–133

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Long H (2007) Parameter Estimation for Ornstein–Uhlenbeck processes driven by \(\alpha \)-stable levy motions. Commun Stoch Anal 1:175–192

    MathSciNet  MATH  Google Scholar 

  • Hu Y, Long H (2009a) On the singularity of least squares estimator for mean-reverting \(\alpha \)-stable motions. Acta Math Sci 29:599–608

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Long H (2009b) Least squares estimator for Ornstein–Uhlenbeck processes driven by \(\alpha \)-stable motions. Stoch Process Appl 119:2465–2480

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Iacus SM (2008) Simulation and inference for stochastic differential equations: with R examples. Springer, New York

  • Kallenberg O (1992) Some time change representations of stable integrals, via predictable transformations of local martingales. Stoch Process Appl 40:199–223

    Article  MathSciNet  MATH  Google Scholar 

  • Kasonga RA (1988) The consistency of a non-linear least squares estimator from diffusion processes. Stoch Process Appl 30:263–275

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden PE, Platen E, Schurz H, Sørensen M (1996) On effects of discretization on estimators of drift parameters for diffusion processes. J Appl Probab 33:1061–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Liptser RS, Shiryaev AN (2000) Statistics of random processes II. Applications. Springer, New York

    Google Scholar 

  • Long H (2009) Least squares estimator for discretely observed Ornstein–Uhlenbeck processes with small Lévy noises. Stat Probab Lett 79:2076–2085

    Article  MATH  Google Scholar 

  • Long H (2010) Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Mathematica Scientia 30:645–663

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen AR (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Stat 22:55–71

    MathSciNet  MATH  Google Scholar 

  • Prakasa Rao BLS (1999) Statistical inference for diffusion type processes. Arnold, London

    MATH  Google Scholar 

  • Rieder S (2012) Robust parameter estimation for the Ornstein–Uhlenbeck process. Stat Methods Appl 21:411–436

    Article  MathSciNet  MATH  Google Scholar 

  • Rosinski J, Woyczynski WA (1986) On Itô stochastic integration with respect to p-stable motion: inner clock, integrability of sample paths, double and multiple integrals. Ann Probab 14:271–286

    Article  MathSciNet  MATH  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes: stochastic models with infinite variance. Chapman and Hall, New York

  • Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Stibůrek D (2013) Statistical inference about the drift parameter in stochastic processes. Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 52:107–120

  • Stibůrek D (2015) Statistical inference on the drift parameter in fractional Brownian motion with a deterministic drift. Communications in statistics (to appear)

  • Weron A, Weron R (1995) Computer simulation of Lévy \(\alpha \)-stable variables and processes. Lect Notes Phys 457:379–392

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stibůrek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stibůrek, D. Hypotheses testing about the drift parameter in linear stochastic differential equation driven by stable processes. Stat Methods Appl 25, 433–452 (2016). https://doi.org/10.1007/s10260-015-0335-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0335-6

Keywords

Navigation