Advertisement

Statistical Methods & Applications

, Volume 22, Issue 3, pp 355–380 | Cite as

The geometric exponential Poisson distribution

  • Saralees NadarajahEmail author
  • Vicente G. Cancho
  • Edwin M. M. Ortega
Article

Abstract

Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. Two real data applications are described to show superior performance versus some known lifetime models.

Keywords

Exponential distribution Geometric distribution  Maximum likelihood estimation Poisson distribution 

Notes

Acknowledgments

The authors would like to thank the two referees and the Editor for careful reading and for their comments which greatly improved the paper.

References

  1. Adamidis A, Loukas S (1998) A lifetime distribution with decreasing failure rate. Stat Probab Lett 39:35–42MathSciNetzbMATHCrossRefGoogle Scholar
  2. Barreto-Souza W, Cribari-Neto F (2009) A generalization of the exponential-Poisson distribution. Stat Probab Lett 79:2493–2500MathSciNetzbMATHCrossRefGoogle Scholar
  3. Conti M, Gregori E, Panzieri F (1999) Load distribution among replicated web servers: a QoS-based approach. ACM SIGMETRICS Perform Eval Rev 27:12–19CrossRefGoogle Scholar
  4. Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81:883–898MathSciNetzbMATHCrossRefGoogle Scholar
  5. Elhai JD, Calhoun PS, Ford JD (2008) Statistical procedures for analyzing mental health services data. Psychiatry Res 160:129–136CrossRefGoogle Scholar
  6. Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31:497–512MathSciNetzbMATHCrossRefGoogle Scholar
  7. Fricker C, Gast N, Mohamed H (2012) Mean field analysis for inhomogeneous bike sharing systems. In: Proceedings of the 23rd international meeting on probabilistic, combinatorial, and asymptotic methods for the analysis of algorithms, pp 365–376Google Scholar
  8. Ginebra J, Puig X (2010) On the measure and the estimation of evenness and diversity. Comput Stat Data Anal 54:2187–2201MathSciNetCrossRefGoogle Scholar
  9. Kuş C (2007) A new lifetime distribution. Comput Stat Data Anal 51:4497–4509zbMATHCrossRefGoogle Scholar
  10. Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New YorkzbMATHGoogle Scholar
  11. Maller RA, Zhou X (1995) Testing for the presence of immune or cured individuals in censored survival data. Biometrics 51:1197–1205MathSciNetzbMATHCrossRefGoogle Scholar
  12. Ortega EMM, Cordeiro GM, Hashimoto EM (2011) A log-linear regression model for the beta-Weibull distribution. Commun Stat Simul Comput 40:1206–1235MathSciNetzbMATHCrossRefGoogle Scholar
  13. Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series, volumes 1, 2 and 3. Gordon and Breach Science, AmsterdamGoogle Scholar
  14. R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  15. Silva RB, Barreto-Souza W, Cordeiro GM (2010) A new distribution with decreasing, increasing and upside-down bathtub failure rate. Comput Stat Data Anal 54:935–944MathSciNetzbMATHCrossRefGoogle Scholar
  16. Singh H, Misra N (1994) On redundancy allocations in systems. J Appl Probab 31:1004–1014MathSciNetzbMATHCrossRefGoogle Scholar
  17. van der Heijden PGM, Bustami R, Cruyff MJLF, Engbersen G, van Houwelingen HC (2003) Point and interval estimation of the population size using the truncated Poisson regression model. Stat Model 3:305–322MathSciNetzbMATHCrossRefGoogle Scholar
  18. Xu S, Hu Z (2011) Mapping quantitative trait loci using the MCMC procedure in SAS. Heredity 106:357–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Saralees Nadarajah
    • 1
    Email author
  • Vicente G. Cancho
    • 2
  • Edwin M. M. Ortega
    • 3
  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  3. 3.Departamento de Ciências ExatasUniversidade de São PauloPiracicabaBrazil

Personalised recommendations