Skip to main content
Log in

Predictive control of posterior robustness for sample size choice in a Bernoulli model

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this article we consider the sample size determination problem in the context of robust Bayesian parameter estimation of the Bernoulli model. Following a robust approach, we consider classes of conjugate Beta prior distributions for the unknown parameter. We assume that inference is robust if posterior quantities of interest (such as point estimates and limits of credible intervals) do not change too much as the prior varies in the selected classes of priors. For the sample size problem, we consider criteria based on predictive distributions of lower bound, upper bound and range of the posterior quantity of interest. The sample size is selected so that, before observing the data, one is confident to observe a small value for the posterior range and, depending on design goals, a large (small) value of the lower (upper) bound of the quantity of interest. We also discuss relationships with and comparison to non robust and non informative Bayesian methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adcock CJ (1997) Sample size determination: a review. Statistician 46:261–283

    Google Scholar 

  • Berger JO (1984) The robust Bayesian viewpoint (with discussion). In: Kadane J (ed) Robustness of Bayesian analysis. North-Holland, Amsterdam

    Google Scholar 

  • Berger JO (1990) Robust Bayesian analysis: sensitivity to the prior. J Stat Plan Inference 25(3):303–328

    Article  MATH  Google Scholar 

  • Brutti P, De Santis F (2008) Avoiding the range of equivalence in clinical trials: Robust Bayesian sample size determination for credible intervals. J Stat Plan Inference 138:1577–1591

    Article  MATH  Google Scholar 

  • Brutti P, De Santis F, Gubbiotti S (2008) Robust Bayesian sample size determination in clinical trials. Stat Med 27(13):2290–2306

    Article  MathSciNet  Google Scholar 

  • Brutti P, De Santis F, Gubbiotti S (2009) Mixtures of prior distributions for predictive Bayesian sample size calculations in clinical trials. Stat Med 28(17):2185–2201

    Article  MathSciNet  Google Scholar 

  • Brutti P, Gubbiotti S, Sambucini V (2011) An extension of the single threshold design for monitoring efficacy and safety in phase II clinical trials. Stat Med 30(14):1648–1664

    Article  MathSciNet  Google Scholar 

  • Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:237–308

    Article  MathSciNet  Google Scholar 

  • DasGupta A, Mukhopadhyay S (1994) Uniform and subuniform posterior robustness: the sample size problem. J Stat Plan Inference 40:189–200

    Article  MathSciNet  MATH  Google Scholar 

  • De Santis F (2006) Sample size determination for robust Bayesian analysis. J Am Stat Assoc 101(473):278–291

    Article  MATH  Google Scholar 

  • De Santis F (2007) Using historical data for Bayesian sample size determination. J R Stat Soc Ser A 170(1):95–113

    Article  Google Scholar 

  • Etzioni R, Kadane JB (1993) Optimal experimental design for another’s analysis. J Am Stat Assoc 88(424):1404–1411

    Article  MathSciNet  MATH  Google Scholar 

  • Gubbiotti S, De Santis F (2011) A Bayesian method for the choice of the sample size in equivalence trials. Aust N Z J Stat 53(4):443–460

    Article  MathSciNet  Google Scholar 

  • Ibrahim JG, Chen M (2000) Power prior distributions for regression models. Stat Sci 15(1):46–60

    Article  MathSciNet  Google Scholar 

  • Joseph L, Belisle P (1997) Bayesian sample size determination for normal means and difference between normal means. Statistician 46(2):209–226

    Google Scholar 

  • Kerman J (2011) Neutral noninformative and informative conjugate beta and gamma prior distributions. Electron J Stat 5:1450–1470

    Article  MathSciNet  MATH  Google Scholar 

  • Neuenschwander B, Branson M, Spiegelhalter D (2009) A note on the power prior. Stat Med 28: 3562–3566

    Article  MathSciNet  Google Scholar 

  • Sambucini V (2008) A Bayesian predictive two-stage design for phase ii clinical trials. Stat Med 27: 1199–1224

    Article  MathSciNet  Google Scholar 

  • Simon R (1989) Optimal two-stage designs for phase II clinical trials. Control Clin Trials 10:1–10

    Article  Google Scholar 

  • Sivaganesan S, Berger JO (1989) Ranges of posterior measures for priors with unimodal contaminations. Ann Stat 17(2):868–889

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter DJ, Abrams K, Myles JP (2004) Bayesian approaches to clinical trials and health-care evaluation. Wiley, New York

    Google Scholar 

  • Tsutakawa RK (1972) Design of experiment for bioassay. J Am Stat Assoc 67(339):585–590

    Article  Google Scholar 

  • Wang F, Gelfand AE (2002) A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Stat Sci 17(2):193–208

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and two anonymous reviewers for their interesting comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Gubbiotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Santis, F., Fasciolo, M.C. & Gubbiotti, S. Predictive control of posterior robustness for sample size choice in a Bernoulli model. Stat Methods Appl 22, 319–340 (2013). https://doi.org/10.1007/s10260-012-0225-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0225-0

Keywords

Navigation