Statistical Methods & Applications

, Volume 22, Issue 3, pp 285–303 | Cite as

On the parameters of Zenga distribution

  • Alberto Arcagni
  • Francesco PorroEmail author


In 2010 Zenga introduced a new three-parameter model for distributions by size that can be used to represent income, wealth, financial and actuarial variables. This paper proposes a summary of its main properties, followed by a focus on the interpretation of the parameters in terms of inequality. The scale parameter μ is equal to the expectation, and it does not affect the inequality, while the two shape parameters α and θ are inverse and direct inequality indicators respectively. This result is obtained through stochastic orders based on inequality curves. A procedure to generate a random sample from Zenga distribution is also proposed. The second part of this article looks at the parameter estimation. Analytical solution of method of moments is obtained. This result is used as a starting point of numerical procedures to obtain maximum likelihood estimates both on ungrouped and grouped data. In the application, three empirical income distributions are considered and the aforementioned estimates are evaluated. A comparison with other well-known models is provided, by the evaluation of three goodness-of-fit indexes.


Mixture Inequality Inequality I(p) curve Income distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcagni A (2011) La determinazione dei parametri di un nuovo modello distributivo per variabili non negative: aspetti metodologici e applicazioni. PhD thesis: Università degli Studi di Milano BicoccaGoogle Scholar
  2. Arnold BC (1983) Pareto distributions. International Cooperative Publishing House, FairlandzbMATHGoogle Scholar
  3. Arnold BC (2008) Pareto and generalized pareto distributions. In: Chotikapanich D (ed) Modeling income distributions and Lorenz curves. Springer, New YorkGoogle Scholar
  4. Banca d’Italia (2008) The 2006 Bank of Italy sample survey on household income and wealth. Supplements to the Statistical Bulletin Sample Surveys, XVIII(7). Available at
  5. Brunazzo A, Pollastri A (1986) Proposta di una nuova distribuzione: la lognormale generalizzata. Scitti in onore di Francesco Brambilla I:57–83 Milano—Edizioni Bocconi ComunicazioneGoogle Scholar
  6. Chotikapanich D (2008) Modeling income distributions and Lorenz curves. Springer, BerlinzbMATHCrossRefGoogle Scholar
  7. Dagum C (1977) A new model of personal income distribution: specification and estimation. Economie Appliquee 30: 413–437Google Scholar
  8. Giorgi GM, Crescenzi M (2001) A look at Bonferroni inequality measure in a reliability framework. Statistica 41: 571–583MathSciNetGoogle Scholar
  9. Kleiber C (2008) A guide to the Dagum distributions. In: Chotikapanich D (ed) Modeling income distributions and lorenz curves. Springer, New YorkGoogle Scholar
  10. Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley-Interscience, New York, p 381zbMATHCrossRefGoogle Scholar
  11. McDonald J (1984) Some generalized functions for the size distribution of income. Econometrica 52: 647–663zbMATHCrossRefGoogle Scholar
  12. McDonald JB, Ransom M (2008) The generalized beta distribution as a model for the distribution of income: estimation of related measures of inequality. Springer, New YorkGoogle Scholar
  13. Pareto V (1897) Cours d’economie politique. New edition by G. H. and G. Busino, Librarie Droz, GenèveGoogle Scholar
  14. Polisicchio M (2008) The continuous random variable with uniform point inequality measure I(p). Statistica & Applicazioni 2(VI): 137–151Google Scholar
  15. Porro F (2008) Equivalence between partial order based on curve L(p) and partial order based on curve I(p). In: Proceedings of SIS 2008 CLUEP PadovaGoogle Scholar
  16. Porro F (2011) Inequality order for Zenga distribution. Technical Report 215. Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali, Università degli Studi di Milano-Bicocca. Available at
  17. Shaked M, Shanthikumar JG (2007) Stochastic orders and their applications. Springer, New YorkGoogle Scholar
  18. Singh SK, Maddala GS (1976) A function for size distribution of incomes. Econometrica 44: 963–970CrossRefGoogle Scholar
  19. Swiss Federal Statistical Office (FSO) (2005) Household Budget Survey (HBS) (EBM/HABE/IBED).
  20. U.S. Census Bureau DataFerret (2008) American Community Survey (ACS2008). Available at
  21. Vianelli S (1982) ulle curve lognormali di ordine r quali famiglie di distribuzioni di errori di proporzione. Statistica II: 156–176Google Scholar
  22. Zenga MM (2007) Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Statistica & Applicazioni V(1): 3–27MathSciNetGoogle Scholar
  23. Zenga MM (2010) Mixture of Polisicchio’s truncated Pareto distributions with beta weights. Statistica & Applicazioni VIII(1): 3–25MathSciNetGoogle Scholar
  24. Zenga MM, Pasquazzi L, Zenga M (2010) First applications of a new three parameter distribution for non-negative variables. Technical Report 187, Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali, Università degli Studi di Milano-Bicocca. Available at
  25. Zenga MM, Polisicchio M, Zenga M, Pasquazzi L (2011) More on M. M. Zenga’s new three-parameter distribution for non-negative variables. Statistica & Applicazioni IX(1): 5–33Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Statistics and Quantitative Methods, Università degli Studi di Milano–BicoccaMilanoItaly

Personalised recommendations