Skip to main content

Advertisement

Log in

Variance predictors for isotropic geometric sampling, with applications in forestry

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

A coherent set of explicit approximations is presented for the variance of planar area and volume estimators obtained under systematic geometric sampling. For planar objects (e.g. a land plot, or a tissue section), sampling is considered with test systems of points, lines, segments, stripes, or quadrats. For three dimensional objects analogous probes are considered. For the formulae to apply the design has to be uniform random (which suffices to estimate planar area or volume only) and also isotropic. The formulae are based on G. Matheron’s transitive theory. A synthetic example on the estimation of canopy cover is explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Baddeley AJ, Jensen EBV (2005) Stereology for statisticians. Chapman&Hall/CRC, London

    Google Scholar 

  • Barabesi L, Fattorini L (1998) The use of replicated plot, line and point sampling for estimating species abundance and ecological diversity. Environ Ecol Stat 5: 353–370

    Article  Google Scholar 

  • Barabesi L, Marcheselli M (2008) Improved strategies for coverage estimation by using replicated line-intercept sampling. Environ Ecol Stat 15: 215–239

    Article  MathSciNet  Google Scholar 

  • Cochran WG (1977) Sampling techniques. 3rd edn. Wiley & Sons., New York

    MATH  Google Scholar 

  • Cruz-Orive LM (1989) On the precision of systematic sampling: a review of Matheron’s transitive methods. J Microsc 153: 315–333

    Article  Google Scholar 

  • Cruz-Orive LM (1993) Systematic sampling in stereology. Bull Int Stat Inst Proc 49th Session, Florence 1993 55(2): 451–468

    Google Scholar 

  • Cruz-Orive LM (1997) Stereology of single objects. J Microsc 186: 93–107

    Article  Google Scholar 

  • Cruz-Orive LM (2002) Stereology: meeting point of integral geometry, probability, and statistics. In memory of Professor Luis A. Santaló (1911–2001). Special issue (Homenaje a Santaló) of Mathematicae Notae 41:49-98

  • Cruz-Orive LM (2006) A general variance predictor for Cavalieri slices. J Microsc 222: 158–165

    Article  MathSciNet  Google Scholar 

  • Cruz-Orive LM et al (2009) Stereology: old and new. In: Capasso V. (ed) Proceedings of the 10th European Congress of ISS. The MIRIAM Project Series. ESCULAPIO Pub.Co., Bologna, pp 1–12

    Google Scholar 

  • Cruz-Orive LM, Ramos-Herrera ML, Artacho-Pérula E (2010) Stereology of isolated objects with the invariator. J Microsc 240: 94–110

    Article  MathSciNet  Google Scholar 

  • García-Fiñana M (2006) Confidence intervals in Cavalieri sampling. J Microsc 222: 146–157

    Article  MathSciNet  Google Scholar 

  • García-Fiñana M, Cruz-Orive LM (2004) Improved variance prediction for systematic sampling on \({\mathbb{R}}\). Statistics 38: 243–272

    Article  MathSciNet  MATH  Google Scholar 

  • Gual-Arnau X, Cruz-Orive LM (1998) Variance prediction under systematic sampling with geometric probes. Adv Appl Probab 30: 889–903

    Article  MathSciNet  MATH  Google Scholar 

  • Guelfand IM, Chilov GE (1962) Les distributions. Tome 1. Dunod, Paris

    MATH  Google Scholar 

  • Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147: 229–263

    Article  Google Scholar 

  • Howard CV, Reed MG (2005) Unbiased stereology. Three-dimensional measurement in microscopy. 2nd edn. Bios/Taylor&Francis, Oxford

    Google Scholar 

  • Kendall MG, Moran PAP (1963) Geometrical probability. Ch.Griffin, London

    MATH  Google Scholar 

  • Kiêu K, Mora M (2006) Precision of stereological planar area predictors. J Microsc 222: 201–211

    Article  MathSciNet  Google Scholar 

  • Kiêu K, Souchet S, J Istas (1999) Pre cision of systematic sampling and transitive methods. J Stat Plan Inf 77: 263–279

    Article  MATH  Google Scholar 

  • Korhonen L, Korhonen KT, Rautianen M, Stenberg P (2006) Estimation of forest canopy cover: a comparison of field measurement echniques. Silva Fennica 40: 577–588

    Google Scholar 

  • Kubínová L, Janác̆ek J (2001) Confocal microscopy and stereology: estimating volume, number, surface area and length by virtual test probes applied to three-dimensional images. Microsc Res Technol 53: 425–435acute;

    Article  Google Scholar 

  • Matérn B (1985) Estimating area by dot counts. Contributions to Probability and Statistics. In Honour of Gunnar Blom, (ed. by J. Lanke and G. Lindgren), pp. 243–257. Department of Mathematical Statistics, Lund

  • Matérn B (1989) Precision of area estimation: a numerical study. J Microsc 153: 269–284

    Article  Google Scholar 

  • Matheron G (1965) Les Variables Régionalisées et Leur Estimation. Masson et Cie., Paris

    Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, No. 5, école Nationale Supérieure des Mines de Paris, Fontainebleau

  • Moran PAP (1950) Numerical integration by systematic sampling. Proc Camb Phil Soc 46: 111–115

    Article  MATH  Google Scholar 

  • Santaló LA (1976) Integral geometry and geometric probability. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Schneider R, Weil W (2008) Stochastic and integral geometry. Springer, Berlin

    Book  MATH  Google Scholar 

  • Souchet S (1995) Précision de l’estimateur de Cavalieri. Rapport de stage, D.E.A. de Statistiques et Modèles Aleatoires appliqués a la Finance, Université Paris-VII, Laboratoire de Biométrie, INRA-Versailles

  • Voss F, Cruz-Orive LM (2009) Second moment formulae for geometric sampling with test probes. Statistics 43: 329–365

    Article  MathSciNet  MATH  Google Scholar 

  • Weibel ER (1979) Stereological methods. Vol. 1: Practical methods for biological morphometry. Academic Press, London

    Google Scholar 

  • Wulfsohn D, Sciortino M, Aaslyng JM, García-Fiñana M (2010) Non-destructive, stereological estimation of canopy surface area. Biometrics 66: 159–168

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Cruz-Orive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Orive, L.M. Variance predictors for isotropic geometric sampling, with applications in forestry. Stat Methods Appl 22, 3–31 (2013). https://doi.org/10.1007/s10260-012-0211-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0211-6

Keywords

Navigation