Advertisement

Statistical Methods & Applications

, Volume 21, Issue 2, pp 227–247 | Cite as

Modelling work history patterns in the Italian labour market

  • Elena FabriziEmail author
  • Alessio Farcomeni
  • Valerio Gatta
Article

Abstract

We focus on work histories of new entrants in 1998 in the Italian labour market. For workers in the private sector, we define a standard and three non-standard history patterns. We profile the workers through a mixed-effect multinomial logit model and show that certain features may be associated with the probability of belonging to one or the other category. Furthermore, we show that there are differential effects on wages associated with non-standard patterns. A closer look at best performing non-standard workers shows that even for them an early contractual stabilization may not always be expected.

Keywords

Labour market Work history patterns Precariousness Proportional hazard regression Latent Markov quantile regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti A (2002) Categorical data analysis. Wiley, GainesvillezbMATHCrossRefGoogle Scholar
  2. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  3. Bartolucci F, Farcomeni A, Pennoni F (2010) An overview of latent Markov models for longitudinal categorical data. arXiv:1003.2804Google Scholar
  4. Berton F (2007) Job search with multiple labour contracts. Ph.D. thesis, Universitá degli studi di TorinoGoogle Scholar
  5. Berton F, Devicienti F, Pacelli L (2008) Temporary jobs: port of entry, trap, or just unobserved heterogeneity? Tech. rep. 79, Laboratorio R. Revelli, Moncalieri (TO)Google Scholar
  6. Campbell I (1991) Atypical employment in australia: towards a research agenda. Tech. rep., Australian Social Policy Conference, SydneyGoogle Scholar
  7. Collett D (2003) Modelling survival data in medical research. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  8. Conover WJ, Iman RL (1982) Analysis of covariance using the rank transformation. Biometrics 38: 715–724CrossRefGoogle Scholar
  9. Corcoran ME (1979) Work experience, labour force withdrawals and women’s wage: empirical results using the 1976 panel of income dynamics. In: Lloyd CB, Andrews ES, Gilory CL (eds) Women in the labour market. Columbia University press, New YorkGoogle Scholar
  10. Cox DR (1972) Regression models and life tables (with discussion). J Royal Stat Soc Ser B 34: 187–220zbMATHGoogle Scholar
  11. Fabrizi E, Evangelista R (2010) The instable nature of new jobs: an analysis based on work histories. Economia e Lavoro 2: 25–46Google Scholar
  12. Farber HS (1999) Mobility and stability: the dynamics of job change in labor markets. In: Ashenfelter D, Card R (eds) Handbook of labor economics. Elsevier Science, New YorkGoogle Scholar
  13. Farcomeni A (2012) Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat Comput 22: 141–152CrossRefGoogle Scholar
  14. Fournier G, Bourassa B, Béji K (2003) Travail atypique récurrent et expérience de précarité: un regard exploratoire. In: Fournier G, Bourassa B, Béji K (eds) La précarité du travail: une réalité aux multiples visages. Université Laval, Québec, pp 41–77Google Scholar
  15. Gagliarducci S (2005) The dynamics of repeated temporary jobs. Tech. rep., EUI Working PapersGoogle Scholar
  16. Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric laplace distribution. Biostatistics 8: 140–154zbMATHCrossRefGoogle Scholar
  17. Hsiao C (2005) Analysis of panel data. Cambridge University Press, New YorkGoogle Scholar
  18. Hyslop DR (1999) State dependence, serial correlation and heterogeneity in intertemporal labour force participation of married women. Econometrica 67: 1255–1294CrossRefGoogle Scholar
  19. Iman RL, Conover WJ (1979) The use of the rank transform in regression. Technometrics 21: 499–509Google Scholar
  20. Jung S-H (1996) Quasi-likelihood for median regression models. J Am Stat Assoc 91: 251–257zbMATHGoogle Scholar
  21. Koenker R (2004) Quantile regression for longitudinal data. J Multiva Anal 91: 74–89MathSciNetzbMATHCrossRefGoogle Scholar
  22. Koenker R (2005) Quantile regression. Cambridge University Press, New YorkzbMATHCrossRefGoogle Scholar
  23. Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46: 33–50MathSciNetzbMATHCrossRefGoogle Scholar
  24. Leombruni R (2005) Percorsi verso la pensione. storie lavorative dei lavoratori anziani in italia. In: Contini B, Trivellato U (eds) Eppur si muove. Dinamiche e persistenze nel mercato del lavoro italiano. Il Mulino, BolognaGoogle Scholar
  25. Leombruni R, Quaranta R (2005) Eppure si muoveva giá: Una breve storia della mobilitá dei lavoratori in italia. In: Contini B, Trivellato U (eds) Eppur si muove. Dinamiche e persistenze nel mercato del lavoro italiano. Il Mulino, BolognaGoogle Scholar
  26. Lipsitz SR, Fitzmaurice GM, Molenberghs G, Zhao LP (1997) Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J Royal Stat Soc Ser C 46: 463–476zbMATHCrossRefGoogle Scholar
  27. Liu Y, Bottai M (2009) Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostat 5Google Scholar
  28. Machado JAF, Mata J (2005) Counterfactual decomposition of changes in wage distributions using quantile regression. J Appl Econ 20: 445–465MathSciNetCrossRefGoogle Scholar
  29. Mandrone E (2008) La riclassificazione del lavoro tra occupazione standard e atipica: l’indagine Isfol Plus 2006. Tech. rep. 1 Collana Studi IsfolGoogle Scholar
  30. Mandrone E, Radicchia D (2006) Plus: participation, labour, employment, survey. Indagine campionaria nazionale sulle caratteristiche e le aspettative degli individui sul lavoro. Rubbettino Editore, Soveria Mannelli (Cz)Google Scholar
  31. Nardi A, Schemper M (1999) New residuals for Cox regression and their application to outlier screening. Biometrics 55: 523–529zbMATHCrossRefGoogle Scholar
  32. Neuman S, Zidermann A (2003) Work histories of israel. Men and women, 1983–1995. Tech. rep. 6, The Pinhas Sapir Center for Development Tel-Aviv UniversityGoogle Scholar
  33. Picchio M (2008) Temporary contracts and transitions to stable jobs in italy. Labour Rev Labour Econ Ind Relat 22: 147–174CrossRefGoogle Scholar
  34. Pistaferri L (1999) Informal networks in the italian labour market. Giornale degli Economisti e Annali di Economia 58: 355–375Google Scholar
  35. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  36. Rabe-Hesketh S, Skrondal A, Pickles A (2004) Gllamm manual. U.C. Berkeley Division of Biostatistics Working Paper Series 1160. Berkeley Electronic Press, BerkeleyGoogle Scholar
  37. Rees A, Gray W (1982) Family effects in youth employment. In: Freeman RB (eds) The youth labour market problem: its nature, causes and consequences. University of Chicago Press, Chicago, pp 453–474Google Scholar
  38. StataCorp: (2007) Stata statistical software: release 10. StataCorp LP, College StationGoogle Scholar
  39. Stewart MB, Grenhalgh CA (1984) Work history patterns and the occupational attainment of women. Econ J 94(375): 493–519CrossRefGoogle Scholar
  40. Therneau T, Grambsch P, Pankratz VS (2003) Penalized survival models and frailty. J Comput Graph Stat 12: 156–175MathSciNetCrossRefGoogle Scholar
  41. Tucker D (2002) Precarious non-standard employment. a review of literature. Tech. rep., Labour Market Policy Group, Department of Labour: WellingtonGoogle Scholar
  42. Wooldridge JM (2002) Econometric analysis of cross section and panel data. MIT Press, CambridgezbMATHGoogle Scholar
  43. Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research areas. J Royal Stat Soc Ser D 52: 331–350MathSciNetCrossRefGoogle Scholar
  44. Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54: 437–447MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Elena Fabrizi
    • 1
    Email author
  • Alessio Farcomeni
    • 2
  • Valerio Gatta
    • 2
  1. 1.Universitá di TeramoTeramoItaly
  2. 2.Sapienza-Universitá di RomaRomeItaly

Personalised recommendations