Skip to main content

Advertisement

Log in

Asymptotic distribution of martingale estimators for a class of epidemic models

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

This article is a contribution to the asymptotic inference on the parameters of a quite general class of stochastic models for the spread of epidemics developing in closed populations. Various epidemic models are contained within our framework, for instance, a stochastic version of the Kermack and McKendrick model and the SIS epidemic model. Each model belonging to this class, which consists in a family of discrete-time stochastic process, contains certain parameters to be estimated by means of martingale estimators. Some particular cases defined by means of Markov chains are included in our setting. The main aim of this work is to prove consistency and asymptotic normality of these estimators. Some hypothesis tests based on the main results are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Lecture notes in statistics, vol 151. Springer, New York

    Book  Google Scholar 

  • Andersson H, Djehiche B (1997) Limit theorems for the total size of a spatial epidemic. J Appl Probab 34: 698–710

    Article  MathSciNet  MATH  Google Scholar 

  • Bailey NTJ (1975) The mathematical theory of infectious diseases. Griffin & Co., New York

    MATH  Google Scholar 

  • Ball F (1983) The threshold behavior of epidemic models. J Appl Probab 20: 227–241

    Article  MathSciNet  MATH  Google Scholar 

  • Ball F, O’Neill P (1993) A modification of the general stochastic epidemic motivated by AIDS modelling. Adv Appl Probab 25: 39–62

    Article  MathSciNet  MATH  Google Scholar 

  • Becker NG (1993) Parametric inference for epidemic models. Math Biosci 117: 239–251

    Article  MATH  Google Scholar 

  • Buckley FM, Pollet PK (2009) Analytical methods for a stochastic mainland-island metapopulation model. In: Anderssen R, Braddock R, Newham L (eds) Proceedings of the 18th World IMACS Congress and MODSIM09 International congress on modelling and simulation. Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, Camberra, Australia, pp 1767–1773

  • Buckley FM, Pollet PK (2010) Limit theorems for discrete-time metapopulation models. Probab Surv 7: 53–83

    Article  MathSciNet  MATH  Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley, New York

    MATH  Google Scholar 

  • Fierro R (2010) A class of stochastic epidemic models and its deterministic counterpart. J Korean Stat Soc 39: 397–407

    Article  MathSciNet  Google Scholar 

  • Hetcote H, Van Ark J (1988) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math Biosci 90: 415–473

    Article  MathSciNet  Google Scholar 

  • Heesterbeek JAP, Dietz K (1996) The concept of R 0 in epidemic theory. Stat Neerlandica 50: 89–110

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquez JA, Simon CP, Koopman J, Sattenspiel L, Perry T (1988) Modelling and analysing HIV transmission: the effect of contact patterns. Math Biosci 92: 119–199

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquez JA, O’Neill P (1991) Reproduction numbers and thresholds in stochastic epidemic models I. Homogeneous populations. Math Biosci 107: 161–186

    Article  MATH  Google Scholar 

  • Kendall DG (1956) Deterministic and stochastic epidemic in closed populations. In: Proceedings of third berkeley symposium in mathematical statistics and probability, vol 4, pp 149–165

  • Kermack WO, McKendrick AG (1927) Contribution to the mathematical theory of epidemics. Proc R Soc Lond A 115: 700–721

    Article  MATH  Google Scholar 

  • Kurtz TG (1981) Approximation of population processes. SIAM Applied Mathematical Series, 36

  • Lefèvre C (1990) Stochastic epidemic models for S-I-R infectious diseases: a brief survey of the recent general theory. In: Gabriel JP, Lefèvre C, Picard P (eds) Stochastic processes in epidemic theory. Lecture notes in biomathematics, vol 86. Springer, New York, pp 1–12

    Google Scholar 

  • Lehmann EL (1999) Elements of large-sample theory. Springer, New York

    Book  MATH  Google Scholar 

  • Lenglart E (1977) Relation de domination entre deux processus. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 13: 171–179

    MathSciNet  MATH  Google Scholar 

  • Mcvinish R, Pollett PK (2009) Limits of large metapopulations with patch dependent extintion probabilities. Appl Probab Trust:1–15

  • Rebolledo R La méthode des martingales appliquée á l’etude de la convergence en loi de processus. Mémoires de la Société Mathématique de France 62:1–125

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Fierro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fierro, R. Asymptotic distribution of martingale estimators for a class of epidemic models. Stat Methods Appl 21, 169–191 (2012). https://doi.org/10.1007/s10260-012-0186-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0186-3

Keywords

Navigation