Skip to main content
Log in

Modelling shelter choices in a class of mixture models for ordinal responses

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In rating surveys, people are requested to evaluate objects, items, services, and so on, by choosing among a list of ordered categories. In some circumstances, it may happen that a subset of respondents selects a specific option just to simplify a more demanding choice. In this context, we generalize a class of ordinal data models (called cub and proven effective for fitting and interpretation), for taking the possible presence of a shelter choice into account. After the discussion of interpretative and inferential issues, the usefulness of the approach is checked against real case studies and by means of a simulation experiment. Some final remarks end the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Agresti A (2010) Analysis of ordinal categorical data. Wiley, Hoboken

    MATH  Google Scholar 

  • Balirano G, Corduas M (2008) Detecting semiotically expressed humor in diasporic TV productions. HUMOR Int J Humor Res 3: 227–251

    Article  Google Scholar 

  • Bock RD, Moustaki I (2007) Item response theory in a general framework. In: Rao CR, Sinharay S (eds) Psychometrics, handbook of statistics, vol 26. Elsevier, Amsterdam, pp 469–513

    Google Scholar 

  • Caliendo G, Iannario M (2009) Communicating European values in institutional discourse: a statistical model for the analysis of citizens’ perception of the EU. GlottoTheory Int J Theor Linguist 2: 19–40

    Google Scholar 

  • Camarda CG, Eilers PHC, Gampe J (2008) Modelling general patterns of digit preference. Stat Model 8: 385–401

    Article  MathSciNet  Google Scholar 

  • Cerchiello P, Iannario M, Piccolo D (2010) Assessing risk perception by means of ordinal models. In: Corazza M, Pizzi C (eds) Mathematical and statistical methods for actuarial sciences and finance. Springer, Heidelberg, pp 65–73

    Google Scholar 

  • Chen Z (2001) Data mining and uncertain reasoning, an integrated approach. Wiley, New York

    Google Scholar 

  • Chin HC, Quddus MA (2003) Modelling count data with excess zeros. An empirical application to traffic accidents. Sociol Methods Res 32: 90–116

    Article  MathSciNet  Google Scholar 

  • Corduas M (2008) Clustering CUB models by Kullback-Liebler divergence. In: Proceedings of SCF-CLAFAG meeting. ESI, Napoli, pp 245–248

  • Corduas M et al (2011) Assessing similarity of rating distributions by Kullback-Liebler divergence. In: Fichet B (eds) Classification and multivariate analysis for complex data structures. Studies in classification, data analysis, and knowledge organization. Springer, Heidelberg, pp 221–229

    Chapter  Google Scholar 

  • Corduas M, Iannario M, Piccolo D et al (2009) A class of statistical models for evaluating services and performances. In: Bini M (eds) Statistical methods for the evaluation of educational services and quality of products. Contribution to statistics. Springer, Heidelberg, pp 99–117

    Chapter  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, London

    MATH  Google Scholar 

  • D’Elia A (2008) A statistical modelling approach for the analysis of TMD chronic pain data. Stat Methods Med Res 17: 389–403

    Article  MathSciNet  MATH  Google Scholar 

  • D’Elia A, Piccolo D (2005) A mixture model for preference data analysis. Comput Stat Data Anal 49: 917–934

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39: 1–38

    MathSciNet  MATH  Google Scholar 

  • Dittrich R, Hatzinger R, Katzenbeisser W (2004) A log-linear approach for modelling ordinal paired comparison data on motives to start a PhD programme. Stat Model 4: 181–193

    Article  MathSciNet  MATH  Google Scholar 

  • Dittrich R, Francis B, Hatzinger R, Katzenbeisser W (2007) A paired comparison approach for the analysis of sets of Likert-scale responses. Stat Model 7: 3–28

    Article  MathSciNet  Google Scholar 

  • Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Farewell VT, Sprott DA (1982) The use of a mixture model for the analysis of survival data with long-term survivors. Biometrics 38: 1041–1046

    Article  Google Scholar 

  • Farewell VT, Sprott DA (1998) The use of a mixture model in the analysis of count data. Biometrics 44: 1191–1194

    Article  Google Scholar 

  • Fielding A, Yang M, Goldstein H (2003) Multilevel ordinal models for examination grades. Stat Model 3: 127–153

    Article  MathSciNet  MATH  Google Scholar 

  • Fligner MA, Verducci JS (1993) Probability models and statistical analyses of ranking data. Springer, New York

    Book  Google Scholar 

  • Grilli L, Rampichini C (2002) Specification issues in stratified variance component ordinal response models. Stat Model 2: 251–264

    Article  MathSciNet  MATH  Google Scholar 

  • Hall DB (2000) Zero-inflated poisson and binomial regression, with random effects: a case study. Biometrics 56: 1030–1039

    Article  MathSciNet  MATH  Google Scholar 

  • Hartzel J, Agresti A, Caffo B (2001) Multinomial logit random effects models. Stat Model 1: 81–102

    Article  MATH  Google Scholar 

  • Heilbron D (1994) Zero-altered and other regression models for count data with added zeros. Biometr J 36: 531–547

    Article  MATH  Google Scholar 

  • Iannario M (2007) A statistical approach for modelling urban audit perception survey. Quaderni di Statistica 9: 133–172

    Google Scholar 

  • Iannario M (2008) A class of models for ordinal variables with covariates effects. Quaderni di Statistica 10: 53–72

    Google Scholar 

  • Iannario M (2010) On the identifiability of a mixture model for ordinal data. Metron LXVIII: 87–94

    Google Scholar 

  • Iannario M (2011a) Preliminary estimators for a mixture model for ordinal data (submitted)

  • Iannario M (2011b) Hierarchical cub models for ordinal variables. Communications in statistics. Theory and methods (accepted)

  • Iannario M, Piccolo D (2009) A program in \({\tt {R}}\) for cub models inference, version 2.0. http://www.dipstat.unina.it/CUBmodels1/

  • Iannario M, Piccolo D (2010a) A new statistical model for the analysis of customer satisfaction. Qual Technol Quant Manag 7: 149–168

    Google Scholar 

  • Iannario M, Piccolo D (2010b) Statistical modelling of subjective survival probabilities. Genus LXVI: 17–42

    Google Scholar 

  • Iannario M, Piccolo D (2011) cub models: statistical methods and empirical evidence. In: Kenett RS, Salini S (eds) Modern analysis of customer surveys, with applications using R. Wiley, New York, pp 231–254

    Chapter  Google Scholar 

  • Johnson NL, Kotz S, Kemp AW (1992) Univariate discrete distributions, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • King G (1998) Unifying political methodology. The likelihood theory of statistical inference. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manifacturing. Technometrics 34: 1–14

    Article  MATH  Google Scholar 

  • Lawless HT, Heynmann H (1999) Sensory evaluation of food. Principles and practice. Springer, New York

    Google Scholar 

  • Leti G (1979) Distanze e indici statistici. La Goliardica editrice, Roma

    Google Scholar 

  • Manski CF, Molinari F (2010) Rounding probabilistic expectations in surveys. J Bus Econ Stat 28: 219–231

    Article  MathSciNet  MATH  Google Scholar 

  • Marden JI (1995) Analyzing and modelling rank data. Chapman & Hall, London

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, London

    MATH  Google Scholar 

  • McLachlan G, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York

    MATH  Google Scholar 

  • McLachlan G, Peel GJ (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Molenberghs G, Verbeke G (2007) Likelihood ratio, score, and Wald tests in a constrained parameter space. Am Stat 61: 22–27

    Article  MathSciNet  Google Scholar 

  • Moustaki I, Steele F (2005) Latent variable models for mixed categorical and survival responses, with an application to fertility preferences and family planning in Bangladesh. Stat Model 5: 327–342

    Article  MathSciNet  MATH  Google Scholar 

  • Mullahy J (1986) Specification and testing of some modified count data models. J Econ 33: 341–365

    MathSciNet  Google Scholar 

  • Paul RP, Banerjee T, Balasoorya U (2010) The multi-clump finite mixture distribution and model selection. Environmetrics 21: 133–142

    MathSciNet  Google Scholar 

  • Piccolo D (2003) On the moments of a mixture of uniform and shifted binomial random variables. Quaderni di Statistica 5: 85–104

    Google Scholar 

  • Piccolo D (2006) Observed information matrix in MUB models. Quaderni di Statistica 8: 33–78

    Google Scholar 

  • Piccolo D (2008) Modelling university students’ final grades by ordinal variables. Quaderni di Statistica 10: 205–226

    Google Scholar 

  • Piccolo D, D’Elia A (2008) A new approach for modelling consumers’ preferences. Food Qual Prefer 19: 247–259

    Article  Google Scholar 

  • Piccolo D, Iannario M (2010) A class of models for interpreting consumer preferences by sensorial data. In: Proceedings of 11th European symposium of statistical methods for the food industry. University of Sannio, Benevento, pp 139–148

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Ridout M, Demétrio CGB, Hinde J (1998) Models for count data with many zeros. International biometric conference, IBC98, Cape Town, pp 1–13

  • Self SG, Liang KY (2003) Asymptotic properties of maximum likelihood estimators and likelihood ratio test under nonstandard conditions. J Am Stat Assoc 82: 605–610

    Article  MathSciNet  Google Scholar 

  • Simonoff JS (2003) Analyzing categorical data. Springer, New York

    MATH  Google Scholar 

  • Skrondal A, Rabe-Hesketh S (2003) Multilevel logistic regression for polytomous data and rankings. Psychometrika 68: 267–287

    Article  MathSciNet  Google Scholar 

  • Train KE (2003) Discrete choice methods with simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • van den Broek J (1995) A score test for zero inflation in a Poisson distribution. Biometrics 51: 738–743

    Article  MathSciNet  MATH  Google Scholar 

  • Vu HTV, Zhou S (1997) Generalization of likelihood ratio tests under nonstandard conditions. Ann Stat 25: 897–916

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Iannario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iannario, M. Modelling shelter choices in a class of mixture models for ordinal responses. Stat Methods Appl 21, 1–22 (2012). https://doi.org/10.1007/s10260-011-0176-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-011-0176-x

Keywords

Navigation