Skip to main content
Log in

Group sequential tests under fractional Brownian motion in monitoring clinical trials

  • Published:
Statistical Methods and Applications Aims and scope Submit manuscript

Abstract

Group sequential tests have been effective tools in monitoring long term clinical trials. There have been several popular discrete sequential boundaries proposed for modeling interim analysis of clinical trials under the assumption of Brownian motion for the stochastic processes generated from test statistics. In this paper, we study the five sequential boundaries in Lan and DeMets (Biometrika 70:659–663, 1983) under the fractional Brownian motion. The fractional Brownian includes the classic Brownian motion as a special case. An example from a real data set is used to illustrate the applications of the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardina X, Jolis M (2006) Multiple fractional integral with Hurst parameter less than 1/2. Stoch Process Appl 116: 463–479

    Article  MATH  MathSciNet  Google Scholar 

  • Beran J (1994) Statistics for ong-memory processes. Chapman and Hall, New York

    Google Scholar 

  • D’Auria B, Samorodnitsky G (2005) Limit behavior of fluid queues and networks. Oper Res 53: 933–945

    Article  MATH  MathSciNet  Google Scholar 

  • Davies RB, Harte DS (1987) Tests for Hurst effect. Biometrika 74: 95–101

    Article  MATH  MathSciNet  Google Scholar 

  • Davis BR, Hardy RJ (1990) Upper bound for type I and type II error rates in conditional power calculation. Commun Stat Theory 19: 3571–3584

    Article  MathSciNet  Google Scholar 

  • Davis BR, Hardy RJ (1994) Data monitoring in clinical trials: the case for stochastic curtailment. J Clin Epidemiol 47: 1033–1042

    Article  Google Scholar 

  • DeMets DL, Hardy R, Friedman LM, Lan KKG (1984) Statistical aspects of early termination in the beta-blocker heart attack trial. Control Clin Trials 5: 362–372

    Article  Google Scholar 

  • DeMets DL, Lan KKG (1994) Interim analysis: the alpha-spending function. Stat Med 13: 1341–1352

    Article  Google Scholar 

  • Fisher LD (1999) Carvedilol and the food and drug administration (FDA) approval process: the FDA paradigm and reflection on hypothesis testing. Control Clin Trials 20: 16–39

    Article  Google Scholar 

  • Gebber GL, Orer HS, Barman SM (2006) Fractal noises and motions in time series of presympathetic and sympathetic neural activities. J Neurophysiol 95: 1176–1184

    Article  Google Scholar 

  • Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1: 141–150

    Article  Google Scholar 

  • Genz A (1993) Comparison of methods for the computation of multivariate normal probabilities. Comput Sci Stat 25: 400–405

    Google Scholar 

  • Heyde CC (2002) On models of long-range dependence. J Appl Stat 39: 882–888

    MATH  MathSciNet  Google Scholar 

  • Hu YZ, Okendal B, Sulem A (2003) Optimal consumption portfolio in a Black-Scholes market driven by fractional Brownian motion. Infin Dimens Anal Quantum Probab Relat Top 6: 519–536

    Article  MATH  MathSciNet  Google Scholar 

  • Hussein A, Carriere KC (2005) On group sequential procedures under variance heterogeneity. Stat Methods Med Res 14: 121–128

    Article  MATH  MathSciNet  Google Scholar 

  • Jennison C, Turnbull BW (2006a) Adaptive and nonadaptive group sequential tests. Biometrika 93: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Jennison C, Turnbull BW (2006b) Efficient group sequential design when there are several effect sizes under consideration. Stat Med 25: 917–932

    Article  MathSciNet  Google Scholar 

  • Lachin JM (2005) A review of methods for futility stopping based on conditional power. Stat Med 24: 2747–2764

    Article  MathSciNet  Google Scholar 

  • Lai DJ (2004) Estimating the Hurst effect and its application in monitoring clinical trials. Comput Stat Data Anal 45: 549–562

    Article  MATH  Google Scholar 

  • Lai DJ, Davis BR, Hardy RJ (2000) Fractional Brownian motion and clinical trials. J Appl Stat 27: 103–108

    Article  MATH  Google Scholar 

  • Lan KKG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70: 659–663

    Article  MATH  MathSciNet  Google Scholar 

  • Lan KKG, Wittes J (1988) The B-value: a tool for monitoring data. Biometrics 44: 579–585

    Article  Google Scholar 

  • Leon JA, Nualart D (2006) Clark-ocone formula for fractional Brownian motion with Hurst parameter less than 1/2. Stoch Anal Appl 24: 427–449

    Article  MATH  MathSciNet  Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noise and applications. SIAM Rev 10: 422–437

    Article  MATH  MathSciNet  Google Scholar 

  • Mielniczuk J, Wojdyllo P (2007) Estimation of Hurst exponent revisited. Comput Stat Data Anal 51: 4510–4525

    Article  MATH  MathSciNet  Google Scholar 

  • Moye LA (1999) End-point interpretation in clinical trials: The case for discipline. Control Clin Trials 20: 40–49

    Article  Google Scholar 

  • Novikov A, Frishling V, Kordzakhia N (1999) Approximations of boundary crossing probabilities for a Brownian motion. J Appl Probab 36: 1019–1030

    Article  MATH  MathSciNet  Google Scholar 

  • O’Brien PC, Fleming TR (1979) Multiple testing procedure for clinical trials. Biometrics 35: 549–556

    Article  Google Scholar 

  • Pocock SJ (1977) Group sequential methods in design and analysis of clinical trials. Biometrika 64: 191–200

    Article  Google Scholar 

  • Reboussin DM, DeMets DL, Kim K, Lan KKG (2000) Computations for group sequential boundaries using the Lan-DeMets spending function method. Control Clin Trials 21: 190–207

    Article  Google Scholar 

  • Shih WJ (2006) Group sequential, sample size re-estimation and two-stage adaptive design in clinical trials: A comparison. Stat Med 25: 933–941

    Article  MathSciNet  Google Scholar 

  • Siegmund D (1986) Boundary crossing probabilities and statistical applications. Ann Stat 14: 361–404

    Article  MATH  MathSciNet  Google Scholar 

  • Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Stat 16: 117–186

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejian Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, D. Group sequential tests under fractional Brownian motion in monitoring clinical trials. Stat Methods Appl 19, 277–286 (2010). https://doi.org/10.1007/s10260-010-0138-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-010-0138-8

Keywords

Navigation