Portuguese Economic Journal

, Volume 17, Issue 2, pp 117–139 | Cite as

Rank-based poverty measures and poverty ordering with an application to Tunisia

  • Naouel Chtioui
  • Mohamed Ayadi
Original Article


Using the normative approach, we develop a class of poverty measures that is function of a weighting system. Each particular weighting function corresponds to a particular social judgment. This offers the decision-maker a large selection of social preferences functions, and he can choose the one that best represents his social judgment. We also develop new concepts of a-extended TIP curves. They are used to establish the conditions of the robust and unanimous poverty ranking of our measures. These conditions are in terms of second-and higher-degree TIP dominance. Finally, we provide an empirical illustration using Tunisian data on the 2005–2010 period.


SST Poverty ordering Yaari dual social welfare function TIP dominance 

JEL Classification

C02 D63 D71 I31 I32 



We are grateful to the editor and two anonymous referees for useful comments. We also thank G. F. Barrett, Y.-C, Hsu for their help.


  1. Aaberge R (2009) Ranking intersecting Lorenz curves. Soc Choice Welf 33(2):235–259. CrossRefGoogle Scholar
  2. Atkinson AB (1987) On the measurement of poverty. Econometrica 55:749–764. CrossRefGoogle Scholar
  3. Barrett GF, Donald SG, Hsu YC (2016) Consistent tests for poverty dominance relations. J Econ 191(2):360–373. CrossRefGoogle Scholar
  4. Chtioui N, Ayadi M (2013) A non-monetary multidimensional poverty analysis of Tunisia using generalized Sen-Shorrocks-Thon measures. In: Berenger V, Bresson F (eds) Poverty and social exclusion around the mediterranean sea, series: economic studies in inequality, social exclusion and well-being. Springer, Boston, pp 143–179. CrossRefGoogle Scholar
  5. Dalton H (1920) The measurement of the inequality of incomes. Econ J 30:348–361. CrossRefGoogle Scholar
  6. Donaldson D, Weymark JA (1980) A single parameter generalization of the Gini indices of inequality. J Econ Theory 22:67–86. CrossRefGoogle Scholar
  7. Donaldson D, Weymark JA (1983) Ethically flexible gini indices for income distributions in the continuum. J Econ Theory 29:353–358. CrossRefGoogle Scholar
  8. Duclos JY, Grégoire P (2002) Absolute and relative deprivation and the measurement of poverty. Rev Income Wealth 48(4):471–492. CrossRefGoogle Scholar
  9. Duclos JY, Makdissi P (2004) Restricted et unrestricted dominance for welfare, inequality and poverty orderings. J Publ Econ Theory 6(1):145–164. CrossRefGoogle Scholar
  10. Foster JE (1984) On economic poverty : a survey a aggregate measures. In: Basmann RL, Rhodes GF (eds) Advances in econometrics, 3. JAI Press, Connecticut, pp 215–251Google Scholar
  11. Foster JE, Jin Y (1998) Poverty Orderings for the Dalton utility-gap measures. In: Jenkins S, Kapteyn A, van Praag B (eds) The distribution of welfare and household production: international perspectives. Cambridge University Press, London, pp 268–285Google Scholar
  12. Foster JE, Shorrocks AF (1988a) Poverty orderings and welfare dominance. Soc Choice Welf 5:179–198. CrossRefGoogle Scholar
  13. Foster JE, Shorrocks AF (1988b) Poverty orderings. Econometrica 56:173–177. CrossRefGoogle Scholar
  14. Foster JE, Shorrocks AF (1988c) Inequality and poverty orderings. Eur Econ Rev 32:654–662. CrossRefGoogle Scholar
  15. Foster JE, Greer J, Thorbecke E (1984) A class of decomposable poverty measures. Econometrica 52:761–776. CrossRefGoogle Scholar
  16. Hagenaars A (1987) A class of poverty indices. Int Econ Rev 28:583–607. CrossRefGoogle Scholar
  17. Institute National of Statistics of Tunisia (2012) Mesure de la pauvreté, des inégalités et de la polarisation en Tunisie 2000–2010Google Scholar
  18. Jenkins SP, Lambert PJ (1997) Three ‘I’s of poverty curves, with an analysis of UK poverty trends. Oxf Econ Pap 49:317–327CrossRefGoogle Scholar
  19. Jenkins SP, Lambert PJ (1998a) Three ‘I’s of poverty curves and poverty dominance: TIPs for poverty analysis. In: Slottje D (ed) Research on economic inequality volume 8. JAI Press, Greenwich, pp 39–56Google Scholar
  20. Jenkins SP, Lambert PJ (1998b) Ranking poverty gap distributions: further TIPs for poverty analysis. In: Slottje D (ed) Research on economic inequality volume 8. JAI Press, Greenwich, pp 31–38Google Scholar
  21. Kakwani N (1980) On a class of poverty measures. Econometrica 48:437–446. CrossRefGoogle Scholar
  22. Kolm SC (1976) Unequal inequalities I. J Econ Theory 12:416–442. CrossRefGoogle Scholar
  23. Makdissi P, Mussard S (2008) Analyzing the impact of indirect tax reforms on rank dependant social welfare functions: a positional dominance approach. Soc Choice Welf 30:385–399. CrossRefGoogle Scholar
  24. Mehran F (1976) Linear measures of inequality. Econometrica 44:805–809. CrossRefGoogle Scholar
  25. Sen A (1976) Poverty : an ordinal approach to measurement. Econometrica 44:219–231. CrossRefGoogle Scholar
  26. 10.2307/2232174Google Scholar
  27. Shorrocks AF (1995) Revisiting the sen poverty index. Econometrica 63:1225–1230. CrossRefGoogle Scholar
  28. Sordo MF, Ramos HM, Ramos CD (2007) Poverty measures and poverty ordering. SORT 31:169–180Google Scholar
  29. Thon D (1979) On Measuring Poverty. Rev Income Wealth 25 :429-439.
  30. Thon D (1983) A note on a troublesome axiom for poverty indices. Economic Journal 93:199–200.
  31. Yaari ME (1987) The dual theory of choice under risk. Econometrica 55:99–115. CrossRefGoogle Scholar
  32. Yaari ME (1988) A controversial proposal concerning inequality measurement. J Econ Theory 44(2):381–397. CrossRefGoogle Scholar
  33. Zheng B (1999) On the power of poverty orderings. Soc Choice Welf 16:349–371. CrossRefGoogle Scholar
  34. Zheng B (2000a) Poverty orderings. J Econ Surv 14:427–470. CrossRefGoogle Scholar
  35. Zheng B (2000b) Minimum distribution-sensitivity, poverty aversion, and poverty orderings. J Econ Theory 95:116–137. CrossRefGoogle Scholar
  36. Zoli C (1999) Intersecting generalized Lorenz curves and the Gini index. Soc Choice Welf 16:183–196. CrossRefGoogle Scholar

Copyright information

© ISEG 2018

Authors and Affiliations

  1. 1.Département d’Informatique de l’Institut Supérieur des Langues Appliquées et d’Informatique de BéjaUniversité de Jendouba et UAQUAPBéjaTunisia
  2. 2.Département d’Economie et Méthodes Quantitatives, Institut Supérieur de Gestion et UAQUAPUniversité de Tunis, I.S.GLe BardoTunisia

Personalised recommendations