An analysis of product strategy in cloud transition considering SaaS customization

Abstract

When traditional enterprise software vendors adapt to software as a service (SaaS) practices and evolving to cloud service models, there is a major change occurring in the enterprise: a new hybrid product strategy consists of on-premises software and competitive customized SaaS. For the first time, we build a stylized model to reveal the influence of SaaS customization on the decisions of monopoly software vendor in the transition period. Increasing the customization efficiency of SaaS results in two possible structural regimes in the market. One is single on-premises software dominate the market if SaaS is customized at a low level and the other is hybrid products segment the market if SaaS is moderate-level customized. Surprisingly, software vendors with high customization proficiency should not allow SaaS products to dominate the market. It would benefit more from offering a competitive hybrid product strategy. Therefore, this paper does not recommend traditional software vendors to transform into pure cloud service providers. This key findings remain valid in the extended analysis of other customization technologies. Besides, the extension models show that both configuration and personalization customization technologies outperform the modification customization technology.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    See more at: https://www.sap.com/docs/download/investors/2018/sap-2018-integrated-report.pdf.

  2. 2.

    See more at: https://www.zdnet.com/article/enterprise-software-vendors-face-deflation-advantage-saas/.

  3. 3.

    See more at: https://aws.amazon.com/cn/.

  4. 4.

    See more at: (available at Aug 15,2020) https://www.salesforce.com/cn/campaign/salesforce-my-way/.

References

  1. Ali AQ, Sultan ABMd, Ghani AAA, Zulzalil H (2019) A Systematic mapping study on the customization solutions of software as a service applications. IEEE Access 7:88196–88217. https://doi.org/10.1109/ACCESS.2019.2925499

    Article  Google Scholar 

  2. Bhargava HK, Choudhary V (2008) Research note—when is versioning optimal for information goods? Manage Sci 54:1029–1035. https://doi.org/10.1287/mnsc.1070.0773

    Article  Google Scholar 

  3. Cheng HK, Li S, Liu Y (2015) Optimal software free trial strategy: limited version, time-locked, or hybrid? Prod OperManag 24:504–517. https://doi.org/10.1111/poms.12248

    Article  Google Scholar 

  4. Choudhary V (2007) Comparison of software quality under perpetual licensing and software as a service. J ManagInfSyst 24:141–165. https://doi.org/10.2753/MIS0742-1222240206

    Article  Google Scholar 

  5. Dutt A, Jain H, Kumar S (2018) Providing software as a service: a design decision(s) model. IseB 16:327–356. https://doi.org/10.1007/s10257-017-0356-9

    Article  Google Scholar 

  6. Fan H, Hussain FK, Younas M, Hussain OK (2015) An integrated personalization framework for SaaS-based cloud services. Future GenerComputSyst 53:157–173. https://doi.org/10.1016/j.future.2015.05.011

    Article  Google Scholar 

  7. Ge C, Huang K-W (2014) Analyzing the economies of scale of software as a service software firms: a stochastic frontier approach. IEEE Trans Eng Manage 61:610–622. https://doi.org/10.1109/TEM.2014.2359975

    Article  Google Scholar 

  8. Gilmore JH, Pine BJ (1997) The four faces of mass customization. Harvard Business Rev 75:91–101

    Google Scholar 

  9. Guo Z, Ma D (2018) A Model of Competition Between Perpetual Software and Software as a Service. MIS Quarterly 42:101–120. https://doi.org/10.25300/MISQ/2018/13640

    Article  Google Scholar 

  10. Jaroucheh Z, Liu X, Smith S (2010) A model-driven approach to flexible multi-level customization of SaaS applications. SEKE 2010 - Proceedings of the 22nd International Conference on Software Engineering and Knowledge Engineering 241–246.

  11. Jia K, Liao X, Feng J (2018) Selling or leasing? dynamic pricing of software with upgrades. Euro J Oper Res 266:1044–1061. https://doi.org/10.1016/j.ejor.2017.10.063

    Article  Google Scholar 

  12. Katz ML (1984) Firm-specific differentiation and competition among multiproduct firms. J Bus 57:S149–S166. https://doi.org/10.1086/296244

    Article  Google Scholar 

  13. Kong L, Li Q, Zheng X (2010) A Novel Model Supporting Customization Sharing in SaaS Applications. Proceedings 2010 Second International Conference on Multimedia Information Networking and Security (MINES 2010) 225–9 https://doi.org/10.1109/MINES.2010.57

  14. Li J, Liu C, Xiao W (2016) Modularity, lead time and return policy for supply chain in mass customization system. Int J ComputIntelliSyst 9:1133–1153. https://doi.org/10.1080/18756891.2016.1256575

    Article  Google Scholar 

  15. Li S, Cheng HK, Jin Y (2018) Optimal distribution strategy for enterprise software: retail, saas, or dual channel? Prod OperManag 29(11):1928–1939. https://doi.org/10.1111/poms.12909

    Article  Google Scholar 

  16. Ma D, Kauffman RJ (2014) Competition between software-as-a-service vendors. IEEE Trans Eng Manage 61:717–729. https://doi.org/10.1109/TEM.2014.2332633

    Article  Google Scholar 

  17. Ma D, Seidmann A (2015) Analyzing software as a service with per-transaction charges. InfSyst Res 26:360–378. https://doi.org/10.1287/isre.2015.0571

    Article  Google Scholar 

  18. Makki M, Landuyt DV, Lagaisse B, Joosen W (2018) A comparative study of workflow customization strategies: Quality implications for multi-tenant SaaS. J SystSoftw 144:423–438. https://doi.org/10.1016/j.jss.2018.07.014

    Article  Google Scholar 

  19. Moens H, De Turck F (2014) Feature-Based Application Development and Management of Multi-Tenant Applications in Clouds. In: 2014 SPLC 18th International Software Product Line Conference 1: 72–81 https://doi.org/10.1145/2648511.2648519.

  20. Mohamed F, Abu-Matar M, Mizouni R, et al (2014) SaaS Dynamic Evolution Based on Model-Driven Software Product Lines. In: 2014 Ieee 6th International Conference on Cloud Computing Technology and Science (cloudcom). 292–299 https://doi.org/10.1109/CloudCom.2014.131.

  21. Moorthy KS (1984) Market segmentation, self-selection, and product line design. Mark Sci 3:288–307. https://doi.org/10.1287/mksc.3.4.288

    Article  Google Scholar 

  22. Mussa M, Rosen S (1978) Monopoly and product quality. Journal of Economic Theory 18:301–317 https://doi.org/10.1016/0022-0531(78)90085-6

  23. Ojala A (2016) Adjusting software revenue and pricing strategies in the era of cloud computing. J SystSoftw 122:40–51. https://doi.org/10.1016/j.jss.2016.08.070

    Article  Google Scholar 

  24. Shivendu S, ZhangJames Z (2015) Versioning in the software industry: heterogeneous disutility from underprovisioning of functionality. InfSyst Res 26:731–753. https://doi.org/10.1287/isre.2015.0597

    Article  Google Scholar 

  25. Sun W, Zhang X, Guo CJ, et al (2008) Software as a service: configuration and customization perspectives. 2008 IEEE Congress on Services Part II (SERVICES-2) 18–25 https://doi.org/10.1109/SERVICES-2.2008.29

  26. Thomas P, Fitch A (2019) Oracle to Make 2,000 Hires in Cloud Push. The wall street journal. https://www.wsj.com/articles/oracle-to-make-2-000-hires-in-cloud-push-11570539658. Accessed 20 September 2020

  27. Tsai W-T, Shao Q, Li W (2010) OIC: Ontology-based intelligent customization framework for SaaS. In: 2010 IEEE International Conference on Service-Oriented Computing and Applications (SOCA). 1–8 https://doi.org/10.1109/SOCA.2010.5707139

  28. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards a cloud definition. ACM SIGCOMM ComputCommun Rev 39:50–55. https://doi.org/10.1145/1496091.1496100

    Article  Google Scholar 

  29. Varian HR (2000) Buying, sharing and renting information goods. J Ind Econ 48:473–488. https://doi.org/10.1111/1467-6451

    Article  Google Scholar 

  30. Zhang J, Seidmann A (2010) Perpetual versus subscription licensing under quality uncertainty and network externality effects. J ManagInfSyst 27:39–68. https://doi.org/10.2753/MIS0742-1222270103

    Article  Google Scholar 

  31. Ziani D, AlShehri A (2015) A new framework for customizing ERP systems in a multi tenant SaaS environment. In: 2015 2nd World Symposium on Web Applications and Networking (WSWAN) 1–7 https://doi.org/10.1109/WSWAN.2015.7209089.

Download references

Acknowledgements

The authors thank the editor and reviewers for constructive advice during the review process and for nudging them toward an extension analysis of various customization technologies.

Funding

This research is supported by the National Social Sciences Fund of China [grant number 15ZDB150] and National Natural Science foundation of China [Grant 71631003].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenjun Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of Proposition 1

The optimal price of on-premises software before transition is \(p_{1}^{^{\prime}} = \frac{{c_{1}^{2} + \left( {\left( {\theta + 1} \right)c_{2} - 2{\mkern 1mu} u} \right)c_{1} + 2{\mkern 1mu} \theta {\mkern 1mu} c_{2}^{2} - u\left( {\theta + 1} \right)c_{2} + u^{2} }}{{2{\mkern 1mu} u - 2{\mkern 1mu} c_{1} }}\) and the market share of traditional software is \({\mkern 1mu} 1 - d^{*} = \frac{{c_{1}^{2} + \left( {\left( {\theta + 1} \right)c_{2} - 2{\mkern 1mu} u} \right)c_{1} + 2{\mkern 1mu} \theta {\mkern 1mu} c_{2}^{2} - u\left( {\theta + 1} \right)c_{2} + u^{2} }}{{2\left( {u - c_{1} - c_{2} } \right)\left( {u - c_{1} } \right)}}\), then we derive the profit of vendor by \(\Pi_{1}^{*} = (1 - d^{*} )p_{1}^{^{\prime}} = \frac{{\left( {c_{1}^{2} + \left( {\left( {\theta + 1} \right)c_{2} - 2{\mkern 1mu} u} \right)c_{1} + 2{\mkern 1mu} \theta {\mkern 1mu} c_{2}^{2} - u\left( {\theta + 1} \right)c_{2} + u^{2} } \right)^{2} }}{{4\left( {u - c_{1} } \right)^{2} \left( {u - c_{1} - c_{2} } \right)}}\).

Then we take the derivative of those with respect to \(\theta\), and we get.

\(\frac{{\delta \Pi_{1} }}{\delta \theta } = - \frac{{\left( {2{\mkern 1mu} \theta {\mkern 1mu} c_{2}^{2} - \left( {\theta + 1} \right)\left( {u - c_{1} } \right)c_{2} + \left( {u - c_{1} } \right)^{2} } \right)c_{2} {\mkern 1mu} \left( { - c_{1} - 2{\mkern 1mu} c_{2} + u} \right)}}{{2\left( {u - c_{1} } \right)^{2} \left( {u - c_{1} - c_{2} } \right)}}\) \(\frac{{\delta (1 - d^{*} )}}{\delta \theta } = {\mkern 1mu} \frac{{c_{2} ({\mkern 1mu} c_{1} + 2{\mkern 1mu} c_{2} - u)}}{{2\left( {u - c_{1} - c_{2} } \right)\left( {u - c_{1} } \right)}}\); \(\frac{{\delta p_{1}^{^{\prime}} }}{\delta \theta } = \frac{{c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} - u} \right)}}{{2{\mkern 1mu} u - 2{\mkern 1mu} c1}}\). Recall that \(u > c_{1} + c_{2}\), then if \(c_{1} + c_{2} < u < c_{1} + 2c_{2}\), we have \(\frac{{\delta \Pi_{1}^{*} }}{\delta \theta } > 0\), \(\frac{{\delta (1 - d^{*} )}}{\delta \theta } > 0\), \(\frac{{\delta p_{1}^{^{\prime}} }}{\delta \theta } > 0\) and vice versa.

Proof of position 2

The software vendor’s decision problem under the hybrid product strategy is

$$\max_{{p_{1} ,p_{2} }} \Pi_{2} = \int_{0}^{{d^{*} }} {(p_{2} - c_{1} )xdx - twd^{*} Q_{{}}^{2*} + (1 - d^{*} )} p_{1}$$
$${\text{S.T.}}\;c_{1} \le p_{2} \le u - a(1 - \eta );\;p_{1} \ge 0;\;0 \le d^{*} \le 1$$

After simplifying the constraints we can write the Lagrange equation as

$$\begin{gathered} \Pi _{2} = \int_{0}^{{d^{*} }} {(p_{2} - c_{1} )xdx - twd^{*} Q^{{2*}} - \eta c_{3} + (1 - d^{*} )} p_{1} + \lambda _{1} {\mkern 1mu} \left( {p_{2} - c_{1} } \right) + \lambda _{2} {\mkern 1mu} \left( {\frac{{\theta c_{1} {\mkern 1mu} c_{2} + 2{\mkern 1mu} \theta {\mkern 1mu} {\mkern 1mu} c_{2} ^{2} - \theta {\mkern 1mu} {\mkern 1mu} c_{2} {\mkern 1mu} u}}{{u - c_{1} }} - p_{1} } \right) \hfill \\ \;\;\;\;\;\; + \lambda _{3} {\mkern 1mu} \left( {\frac{{ac_{1} {\mkern 1mu} \eta - a\eta {\mkern 1mu} u + \theta {\mkern 1mu} c_{1} {\mkern 1mu} {\mkern 1mu} c_{2} + 2{\mkern 1mu} \theta {\mkern 1mu} {\mkern 1mu} c_{2} ^{2} - \theta {\mkern 1mu} c_{2} {\mkern 1mu} u - ac_{1} + au + c_{1} ^{2} + {\mkern 1mu} c_{2} {\mkern 1mu} c_{1} - c_{1} {\mkern 1mu} u - {\mkern 1mu} c_{2} {\mkern 1mu} u}}{{ - u + c_{1} }} - p_{2} + p_{1} } \right) + \lambda _{4} {\mkern 1mu} p_{1} \hfill \\ \end{gathered}$$

There are 16 combinations of lambda and we summary all in the following table. For each lambda, it has two states. The first state is \(\lambda_{i} { = }0\), and in the second state is \(\lambda_{i} > 0\)(\(i = 1,2,3,4.\)). We denote state 1 as 0 and state 2 as 1. In this case, \(\lambda_{1} { = }0,\lambda_{2} { = }0,\lambda_{3} { = }0,\lambda_{4} { = }0\) can be denoted as (0, 0, 0, 0); and \(\lambda_{1} > 0,\lambda_{2} { = }0,\lambda_{3} { = }0,\lambda_{4} { = }0\) is written as (1, 0, 0, 0) Table

Table 3 All the combination of \(\lambda\)

3 and

Table 4 The result of Lagrange problem

4.

We begin with combination (1,1), then we discuss combination (1,4) and finally we explain combination (4,4).

Conditional Solution 1

When \(\lambda_{1} > 0,\lambda_{2} = 0,\lambda_{3} = 0,\lambda_{4} = 0\), there is demand of both on-premises software and SaaS. Thus we have.

\(p_{1}^{*} = \frac{{A_{1} u^{2} + B_{1} u - 2{\mkern 1mu} w\theta {\mkern 1mu} \left( {\left( {\eta - 1} \right)a + c_{2} } \right)tc_{1}^{2} }}{{2{\mkern 1mu} \left( {\left( {\eta - 1} \right)a - tw + c_{2} } \right)\left( {u - c_{1} } \right)u}}\) and \(p_{2}^{*} = c_{1}\)

$$d_{t}^{2*} = \frac{{\left( {\left( {wt - c_{2} } \right)\theta + \left( {\eta - 1} \right)a + c_{2} } \right)u^{2} + \left( {\left( {\left( { - 3{\mkern 1mu} wt + c_{2} } \right)\theta - c_{2} + \left( { - \eta + 1} \right)a} \right){\mkern 1mu} c_{1} + 2{\mkern 1mu} \theta {\mkern 1mu} c_{2}^{2} } \right)u + 2{\mkern 1mu} c_{1}^{2} t\theta {\mkern 1mu} w}}{{2\left( {\left( {\eta - 1} \right)a - wt + c_{2} } \right)\left( {u - {\mkern 1mu} c_{1} } \right)u}}$$
$$A_{1} = - \left( {\eta - 1} \right)^{2} a^{2} - \left( {\left( {\theta + 2} \right)c_{2} + \theta {\mkern 1mu} tw} \right)\left( {\eta - 1} \right)a + \left( {\left( { - \theta - 1} \right)c_{2} + \theta {\mkern 1mu} tw} \right)c_{2}$$
$$\begin{gathered} B_{1} = c_{1} {\mkern 1mu} {\mkern 1mu} \left( {\eta - 1} \right)^{2} a^{2} + 3{\mkern 1mu} \left( {\frac{2}{3}\theta {\mkern 1mu} c_{2}^{2} + \frac{1}{3}c_{1} {\mkern 1mu} {\mkern 1mu} \left( {\theta + 2} \right)c_{2} + c_{1} t\theta {\mkern 1mu} w} \right)\left( {\eta - 1} \right)a \hfill \\ \qquad + \left( {2{\mkern 1mu} \theta {\mkern 1mu} c_{2} {\mkern 1mu}^{2} + \left( {\left( { - 4{\mkern 1mu} tw + c_{1} {\mkern 1mu} } \right)\theta + c_{1} {\mkern 1mu} } \right)c_{2} + c_{1} {\mkern 1mu} t\theta {\mkern 1mu} w} \right)c_{2} \hfill \\ \end{gathered}$$

If \(\eta > \eta_{1} = \frac{{\left( {\left( { - tw + c_{2} } \right)\theta + a - c_{2} } \right)u^{2} + \left( {\left( {\left( {3{\mkern 1mu} tw - c_{2} } \right)c_{1} - 2{\mkern 1mu} c_{2}^{2} } \right)\theta - c_{1} {\mkern 1mu} \left( {a - c_{2} } \right)} \right)u - 2{\mkern 1mu} \theta {\mkern 1mu} c_{1}^{2} wt}}{{au\left( {u - c_{1} } \right)}}\), we have \(\lambda_{1} > 0\).

Conditional solution 2

(See combination (1,4)) when \(\lambda_{1} = 0,\lambda_{2} = 0,\lambda_{3} = 0,\lambda_{4} > 0\) there is only demand of SaaS.

If \(\eta > \eta_{2} = \frac{{4{\mkern 1mu} w\left( {u - c_{1} } \right)\left( {u/2 + a - c_{1} - c_{2} } \right)t - uc_{2} {\mkern 1mu} \left( {u - c_{1} - 2{\mkern 1mu} c_{2} } \right)c_{2} }}{{4wa\left( {u - c_{1} } \right)t}}\), we have \(\lambda_{4} > 0\). And the prices are.

\(p_{2}^{*} = \frac{{A_{2} u^{2} + B_{2} u + 4{\mkern 1mu} wtc_{1} \left( {c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)^{2} }}{{ - 4{\mkern 1mu} tw\left( {u - c_{1} } \right)\left( {\frac{ - u}{2} + \left( {\eta - 1} \right)a + c_{2} + c_{1} } \right) - uc{}_{2}{\mkern 1mu} \left( {u - c_{1} - 2{\mkern 1mu} c_{2} } \right)}}\) and \(p_{1}^{*} = 0\).

Then \(d_{t}^{3*} = - 2{\mkern 1mu} \frac{{\left( {w\left( { - u/2 + \left( {\eta - 1} \right)a + c_{2} + c_{1} } \right)\left( {u - c_{1} } \right)t + 1/4{\mkern 1mu} uc_{2} \left( {u - c_{1} - 2{\mkern 1mu} c_{2} } \right)} \right)\theta }}{{u\left( { - 2{\mkern 1mu} tw + c_{2} + \left( {\eta - 1} \right)a} \right)\left( {u - c_{1} } \right)}}\)

$$A_{2} = 2{\mkern 1mu} \left( {\left( {\eta - 1} \right)a + c_{1} - c_{2} } \right)wt + \left( { - c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)c_{2}$$
$$B_{2} = - 4{\mkern 1mu} w\left( {\left( {\eta - 1} \right)^{2} a^{2} + \frac{2}{5}{\mkern 1mu} \left( {\eta - 1} \right)\left( {c_{1} + \frac{4}{5}{\mkern 1mu} c_{2} } \right)a + \frac{3}{2}{\mkern 1mu} c_{1}^{2} + \frac{3}{2}{\mkern 1mu} c_{1} c_{2} - c_{2}^{2} } \right)t - \left( { - c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)$$

Conditional Solution 3

When \(\lambda_{1} = 0,\lambda_{2} = 0,\lambda_{3} = 0,\lambda_{4} = 0\) we derive a conditional solution with only demand of on-premises software (see combination (4, 4)). And we have \(p_{2}^{*} = c_{1}\) and \(p_{1}^{*} = - \frac{{c_{2} {\mkern 1mu} \theta {\mkern 1mu} \left( {c_{1} + 2c_{2} - u} \right)}}{{ - u + c_{1} }}\), \(d_{2}^{1*} = 0\). Then \(Eu_{2} = (u - c_{1} - a(1 - \eta ))d_{i} < 0\), thus \(\eta < \eta_{3} = 1 - \frac{{u - c_{1} }}{a}\), then we have \(\eta_{3} > \eta_{1}\). Thus when \(\eta < \eta_{3}\),\(Eu_{2} = (u - c_{1} - a(1 - \eta ))d_{i} < 0\) and there is only demand of on-premises software. So if \(\eta < \eta_{1}\) there is only on-premises software dominated the market and if \(\eta > \eta_{2}\) we have only demand of SaaS software, then if \(\eta > \eta_{1}\) there is both demand of on-premises software and SaaS.

Proof of Lemma 1

According to proposition 2 if \(\eta < \eta_{1}\) there is only on-premises software dominated the market.

Proof of Lemma 2

According to proposition 2 if \(\eta_{1} < \eta < \eta_{2}\) we have both demand of SaaS software.

$$d_{t}^{2*} = \frac{{\left( {\left( {wt - c_{2} } \right)\theta + \left( {\eta - 1} \right)a + c_{2} } \right)u^{2} + \left( {\left( {\left( { - 3{\mkern 1mu} wt + c_{2} } \right)\theta - c_{2} + \left( { - \eta + 1} \right)a} \right){\mkern 1mu} c_{1} + 2{\mkern 1mu} \theta {\mkern 1mu} c_{2}^{2} } \right)u + 2{\mkern 1mu} c_{1}^{2} t\theta {\mkern 1mu} w}}{{2\left( {\left( {\eta - 1} \right)a - wt + c_{2} } \right)\left( {u - {\mkern 1mu} c_{1} } \right)u}}$$
$$\frac{{\delta d_{t}^{2*} }}{\delta \eta } = - \frac{{a\left( {\left( {\left( {tw - c_{2} } \right)\theta + tw} \right)\left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)^{2} + \left( {\left( { - 3{\mkern 1mu} twc_{1} + c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)} \right)\theta - twc_{1} } \right)\left( {c_{1} + 2c_{2} } \right) + 2{\mkern 1mu} c_{1}^{2} t\theta {\mkern 1mu} w} \right)}}{{4c_{2} {\mkern 1mu} \left( {\left( {\eta - 1} \right)a - tw + c_{2} } \right)^{2} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)c_{2} }} > 0$$

Thus the demand of SaaS increases in customization proficiency.

Proof of Proposition 3

Recall the proof of proposition 2, we can see the prices of on-premises software and SaaS.

$$\left( {p_{1}^{*} ,\;p_{2}^{*} } \right) = \left( {\frac{{A_{1} u^{2} + B_{1} u - 2{\mkern 1mu} w\theta {\mkern 1mu} \left( {\left( {\eta - 1} \right)a + c_{2} } \right)tc_{1}^{2} }}{{2{\mkern 1mu} \left( {\left( {\eta - 1} \right)a - tw + c_{2} } \right)\left( {u - c_{1} } \right)u}};c_{1} } \right)$$
$$A_{1} = - \left( {\eta - 1} \right)^{2} a^{2} - \left( {\left( {\theta + 2} \right)c_{2} + \theta {\mkern 1mu} tw} \right)\left( {\eta - 1} \right)a + \left( {\left( { - \theta - 1} \right)c_{2} + \theta {\mkern 1mu} tw} \right)c_{2}$$
$$\begin{gathered} B_{1} = c_{1} {\mkern 1mu} {\mkern 1mu} \left( {\eta - 1} \right)^{2} a^{2} + 3{\mkern 1mu} \left( {\frac{2}{3}\theta {\mkern 1mu} c_{2} ^{2} + \frac{1}{3}c_{1} {\mkern 1mu} {\mkern 1mu} \left( {\theta + 2} \right)c_{2} + c_{1} t\theta {\mkern 1mu} w} \right)\left( {\eta - 1} \right)a \hfill \\ \;\;\;\;\; \quad + \left( {2{\mkern 1mu} \theta {\mkern 1mu} c_{2} {\mkern 1mu} ^{2} + \left( {\left( { - 4{\mkern 1mu} tw + c_{1} {\mkern 1mu} } \right)\theta + c_{1} {\mkern 1mu} } \right)c_{2} + c_{1} {\mkern 1mu} t\theta {\mkern 1mu} w} \right)c_{2} \hfill \\ \end{gathered}$$

Thus, the SaaS product line has an effect on on-premises product line by impacting the prices through customization proficiency \(\eta\).

$$\eta^{*} \left| {_{{\frac{{\delta d_{t}^{2*} }}{\delta t} = 0}} } \right. = \frac{{\left( {a\theta + a - c_{2} } \right)u^{2} + \left( {\left( {\left( { - 3{\mkern 1mu} a + 2{\mkern 1mu} c_{2} } \right)c_{1} - 2{\mkern 1mu} c_{2}^{2} } \right)\theta - c_{1} {\mkern 1mu} \left( {a - c_{2} } \right)} \right)u + 2c_{1}^{2} \theta {\mkern 1mu} \left( {a - c_{2} } \right)}}{{\left( {u - c_{1} } \right)\left( {\left( {\theta + 1} \right)u - 2{\mkern 1mu} c_{1} {\mkern 1mu} \theta } \right)a}}$$

If \(c_{1} + 2c_{2} > u > c_{1} + c_{2}\), we have \(\eta_{1} < \eta^{*} < \eta_{2}\); when \(\eta_{1} < \eta < \eta^{*}\), thus \(\frac{{\delta d_{t}^{2*} }}{\delta t} > 0\); and when \(\eta^{*} \le \eta < \eta_{2}\), we have \(\frac{{\delta d_{t}^{2*} }}{\delta t} \le 0\), \(\frac{{\delta d_{t}^{2*} }}{\delta t\delta \eta } < 0\).

Proof of Lemma 3

\(\eta_{2} \le \eta < 1\), the optimal pricing strategy is.

\(\left( {p_{1}^{*} ,p_{2}^{*} } \right) = \left( {0,\frac{{A_{2} u^{2} + B_{2} u + 4{\mkern 1mu} wtc_{1} \left( {c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)^{2} }}{{ - 4{\mkern 1mu} tw\left( {u - c_{1} } \right)\left( {\frac{ - u}{2} + \left( {\eta - 1} \right)a + c_{2} + c_{1} } \right) - uc{}_{2}{\mkern 1mu} \left( {u - c_{1} - 2{\mkern 1mu} c_{2} } \right)}}} \right)\)

And the demand is.

\(d^{*} = - 2{\mkern 1mu} \frac{{\left( {w\left( { - u/2 + \left( {\eta - 1} \right)a + c_{2} + c_{1} } \right)\left( {u - c_{1} } \right)t + 1/4{\mkern 1mu} uc_{2} \left( {u - c_{1} - 2{\mkern 1mu} c_{2} } \right)} \right)\theta }}{{u\left( { - 2{\mkern 1mu} tw + c_{2} + \left( {\eta - 1} \right)a} \right)\left( {u - c_{1} } \right)}}\).

$$A_{2} = 2{\mkern 1mu} \left( {\left( {\eta - 1} \right)a + c_{1} - c_{2} } \right)wt + \left( { - c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)c_{2}$$
$$B_{2} = - 4{\mkern 1mu} w\left( {\left( {\eta - 1} \right)^{2} a^{2} + \frac{2}{5}{\mkern 1mu} \left( {\eta - 1} \right)\left( {c_{1} + \frac{4}{5}{\mkern 1mu} c_{2} } \right)a + \frac{3}{2}{\mkern 1mu} c_{1}^{2} + \frac{3}{2}{\mkern 1mu} c_{1} c_{2} - c_{2}^{2} } \right)t - \left( { - c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)$$

Proof of proposition 5

The profit function of the vendor is:

$$\max_{{p_{1}^{c} ,p_{2}^{c} }} \Pi_{t}^{c} = \int_{0}^{{d^{c*} }} {(p_{2}^{c} - c_{1} )xdx - twd^{c*} Q_{{}}^{2*} - \eta^{c} c_{4} - \frac{1}{2}k(\eta^{c} )^{2} - m + (1 - d^{c*} )} p_{1}^{c}$$

S.T.\(c_{1} \le p_{2}^{c} \le u - a(1 - \eta^{c} )\); \(p_{1}^{c} \ge 0\); \(0 \le d^{c*} \le 1\).

After simplifying the constraints we can write the Lagrange equation as

$$\begin{gathered} \Pi_{t}^{c} = \int_{0}^{{d^{c*} }} {(p_{2}^{c} - c_{1} )xdx - twd^{c*} Q^{2*} - \eta^{c} c_{3} + (1 - d^{c*} )} p_{1} + \lambda_{1} {\mkern 1mu} \left( {p_{2}^{c} - c_{1} } \right) + \lambda_{2} {\mkern 1mu} \left( {\frac{{\theta c_{1} {\mkern 1mu} c_{2} + 2{\mkern 1mu} \theta {\mkern 1mu} {\mkern 1mu} c_{2}^{2} - \theta {\mkern 1mu} {\mkern 1mu} c_{2} {\mkern 1mu} u}}{{u - c_{1} }} - p_{1}^{c} } \right) \hfill \\ \quad + \lambda_{3} {\mkern 1mu} \left( {\frac{{ac_{1} {\mkern 1mu} \eta - a\eta {\mkern 1mu} u + \theta {\mkern 1mu} c_{1} {\mkern 1mu} {\mkern 1mu} c_{2} + 2{\mkern 1mu} \theta {\mkern 1mu} {\mkern 1mu} c_{2}^{2} - \theta {\mkern 1mu} c_{2} {\mkern 1mu} u - ac_{1} + au + c_{1}^{2} + {\mkern 1mu} c_{2} {\mkern 1mu} c_{1} - c_{1} {\mkern 1mu} u - {\mkern 1mu} c_{2} {\mkern 1mu} u}}{{ - u + c_{1} }} - p_{2}^{c} + p_{1}^{c} } \right) + \lambda_{4} {\mkern 1mu} p_{1}^{c} \hfill \\ \end{gathered}$$

Then we get \(\eta_{1}^{c} = \frac{{D_{0} u^{2} + Du + 2{\mkern 1mu} twc_{1}^{2} \theta }}{{au(c_{1} - u)}}\), \(\eta_{2}^{c} = \frac{{D_{1} u^{2} + D_{2} u + 8{\mkern 1mu} tw\left( {tw + a - c_{1} /4 - c_{2} } \right)\theta {\mkern 1mu} c_{1} }}{{a\left( {8{\mkern 1mu} c_{1} {\mkern 1mu} t\theta {\mkern 1mu} w - 8{\mkern 1mu} uw\theta {\mkern 1mu} t + 3{\mkern 1mu} c_{1} u - 3{\mkern 1mu} u^{2} } \right)}}\),

\(\eta_{3}^{c} = \frac{{D_{3} u^{2} + D_{4} u + 12{\mkern 1mu} tw\left( {4/3{\mkern 1mu} tw + a - c_{1} /3 - c_{2} } \right)\theta {\mkern 1mu} c_{1} }}{{4{\mkern 1mu} a\left( {3{\mkern 1mu} c_{1} {\mkern 1mu} t\theta {\mkern 1mu} w - 3{\mkern 1mu} uw\theta {\mkern 1mu} t + c_{1} u - u^{2} } \right)}}\), \(\eta_{4}^{c} = 1 + \frac{{2{\mkern 1mu} tw - c_{2} }}{a}\).

$$D_{0} = \left( {\left( {tw - c_{2} } \right)\theta - a + c_{2} } \right)$$
$$D = \left( {\left( {\left( { - 3{\mkern 1mu} tw + c_{2} } \right)c_{1} + 2{\mkern 1mu} c_{2}^{2} } \right)\theta + c_{1} \left( {a - c_{2} } \right)} \right)$$

\(D_{1} = \left( {\left( { - tw + c_{2} } \right)\theta - 4{\mkern 1mu} tw - 3{\mkern 1mu} a + 3{\mkern 1mu} c_{2} } \right)\), \(D_{2} = \left( {\left( { - 8{\mkern 1mu} t^{2} w^{2} - 8{\mkern 1mu} \left( {a - 3/8{\mkern 1mu} c_{1} - c_{2} } \right)wt - c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)} \right)\theta + 3{\mkern 1mu} \left( {4/3{\mkern 1mu} tw + a - c_{2} } \right)c_{1} } \right)\)

$$D_{3} = \left( {\left( { - 2{\mkern 1mu} tw + c_{2} } \right)\theta - 8{\mkern 1mu} tw - 4{\mkern 1mu} a + 4{\mkern 1mu} c_{2} } \right)$$
$$D_{4} = \left( {\left( { - 16{\mkern 1mu} t^{2} w^{2} - 12{\mkern 1mu} \left( {a - c_{1} /2 - c_{2} } \right)wt - c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)} \right)\theta + 4{\mkern 1mu} c_{1} {\mkern 1mu} \left( {2{\mkern 1mu} tw + a - c_{2} } \right)} \right)$$

Conditional solution 1

\(\eta_{1}^{c} < \eta < \eta_{2}^{c}\), there are demands from both SaaS and on-premises.

$$p_{2}^{c*} = c_{1}$$
$$p_{1}^{c*} = \frac{{A_{3} u^{2} + B_{3} u - 2{\mkern 1mu} tw\left( {c_{2} + \left( {\eta - 1} \right)a} \right)c_{1}^{2} \theta }}{{2(c_{1} - u)u(a(\eta - 1) - wt + c_{2} )}}; \quad A_{3} = - \left( {\eta - 1} \right)^{2} a^{2} - \left( {\eta - 1} \right)\left( {\left( {tw + c_{2} } \right)\theta + 2{\mkern 1mu} c_{2} } \right)a + c_{2} {\mkern 1mu} \left( {\left( {tw - c_{2} } \right)\theta - c_{2} } \right)$$
$$\begin{gathered} B_{3} = c1{\mkern 1mu} \left( {\eta - 1} \right)^{2} a^{2} + 3{\mkern 1mu} \left( {\eta - 1} \right)\left( {\left( {c_{1} {\mkern 1mu} tw + 1/3{\mkern 1mu} c_{1} {\mkern 1mu} c_{2} + 2/3{\mkern 1mu} c_{2}^{2} } \right)\theta + 2/3{\mkern 1mu} c_{1} c_{2} } \right)a \hfill \\ \quad + c_{2} {\mkern 1mu} \left( {\left( {2{\mkern 1mu} c_{2}^{2} + \left( { - 4{\mkern 1mu} tw + c_{1} } \right)c_{2} + c_{1} tw} \right)\theta + c_{1} c_{2} } \right) \hfill \\ \end{gathered}$$

Conditional solution 2

$$\eta_{3}^{c} < \eta^{c} < \eta_{4}^{c}$$

There is only demand from SaaS.

\(p_{1}^{c*} = 0\)

$$p_{2}^{c*} = \frac{{A_{4} u^{2} + B_{4} u + 4{\mkern 1mu} wc_{1} {\mkern 1mu} t(c_{1} - c_{2} + a(\eta - 1))^{2} }}{{ - 4{\mkern 1mu} \left( {u - c_{1} } \right)\left( { - u/2 + \left( {\eta - 1} \right)a + c_{2} + c_{1} } \right)wt - uc_{2} {\mkern 1mu} \left( {u - c_{1} - 2{\mkern 1mu} c_{2} } \right)}}$$

\(A_{4} = 2{\mkern 1mu} w\left( {\left( {\eta - 1} \right)a + c_{1} - c_{2} } \right)t + c_{2} {\mkern 1mu} \left( { - c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right)\), \(\begin{gathered} B_{4} = - 4{\mkern 1mu} w\left( {\left( {\eta - 1} \right)^{2} a^{2} + 5/2{\mkern 1mu} \left( {\eta - 1} \right)\left( {c_{1} + 4/5{\mkern 1mu} c_{2} } \right)a + 3/2{\mkern 1mu} c_{1}^{2} + 3/2{\mkern 1mu} c_{1} c_{2} - c_{2}^{2} } \right)t \hfill \\ \qquad - c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)\left( { - c_{1} + \left( {\eta - 1} \right)a + c_{2} } \right) \hfill \\ \end{gathered}\).

Conditional Solution 3

When \(\lambda_{1} = 0,\lambda_{2} = 0,\lambda_{3} = 0,\lambda_{4} = 0\) we derive a conditional solution with only demand of on-premises software. And we have.

$$p_{1}^{c*} = - \frac{{c_{2} {\mkern 1mu} \theta {\mkern 1mu} \left( {c_{1} + 2c_{2} - u} \right)}}{{ - u + c_{1} }};$$
$$p_{2}^{c*} = \frac{{u((c_{1} - u)(tw\theta - a(1 - \eta ) + c_{2} (1 - \theta ) + c_{1} ) - 2\theta c_{2}^{2} )}}{{(2tw\theta + u)(c_{1} - u)}}$$

We refer to the numerical simulation for the comparison of profits.

Proof of proposition 6

The profit of the software vendor is Table

Table 5 The result of lagrange problem

5.

\(\max_{{p_{1}^{m} ,p_{2}^{m} }} \Pi_{t}^{m} = \int_{0}^{{d^{m*} }} {(p_{2}^{m} - c_{1} )xdx + (1 - d^{m*} )} p_{1}^{m} - twd^{m*} Q_{{}}^{2*} - d^{m*} \eta^{m} c_{3}\), S.T. \(c_{1} \le p_{2} \le u\); \(p_{1} \ge 0\); \(0 \le d^{*} \le 1\). And the Lagrange equation is:

$$\begin{gathered} \Pi_{2} = \int_{0}^{{d^{*} }} {(p_{2} - c_{1} )xdx - wd^{*} Q^{2*} - d^{*} \eta c_{3} + (1 - d^{*} )} p_{1} + \lambda_{1} {\mkern 1mu} \left( {p_{2} - c_{1} } \right) + \lambda_{2} {\mkern 1mu} \left( {\frac{{\theta c_{1} {\mkern 1mu} c_{2} + 2{\mkern 1mu} \theta {\mkern 1mu} {\mkern 1mu} c_{2}^{2} - \theta {\mkern 1mu} {\mkern 1mu} c_{2} {\mkern 1mu} u}}{{u - c_{1} }} - p_{1} } \right) \hfill \\ + \lambda_{3} {\mkern 1mu} \left( {\left( { - u + c1} \right)p2 + p1{\mkern 1mu} \left( {u - c1} \right) + \left( {u - c1} \right)\left( {c1 + c2} \right) - \theta {\mkern 1mu} c2{\mkern 1mu} c1 - 2{\mkern 1mu} \theta {\mkern 1mu} c2^{2} + \theta {\mkern 1mu} c2{\mkern 1mu} u} \right) + \lambda_{4} {\mkern 1mu} p_{1} \hfill \\ \end{gathered}$$

We get two key points of efficiency:

$$\eta_{1}^{m} = \frac{{D_{5} u^{2} + D_{6} u + {\mkern 1mu} c_{1} {\mkern 1mu} \left( {8w - 2c_{1} - c_{2} } \right)w\theta }}{{c_{3} u\left( {u - c_{1} } \right)}}$$
$$\eta_{2}^{m} = \frac{{2{\mkern 1mu} c_{1}^{2} w\theta + c_{1} {\mkern 1mu} c_{2} {\mkern 1mu} \theta {\mkern 1mu} u - 3{\mkern 1mu} c_{1} \theta {\mkern 1mu} uw + 2{\mkern 1mu} c_{2}^{2} \theta {\mkern 1mu} u - c_{2} {\mkern 1mu} \theta {\mkern 1mu} u^{2} + \theta {\mkern 1mu} u^{2} w - uc_{2} {\mkern 1mu} c_{1} + u^{2} c_{2} }}{{c_{3} {\mkern 1mu} u\left( { - u + c_{1} } \right)}}$$

\(D_{5} = \left( {\left( { - w + c_{2} } \right)\theta - 4{\mkern 1mu} w + 3{\mkern 1mu} c_{2} } \right)\), \(D_{6} = \left( {\left( { - 8{\mkern 1mu} w^{2} + \left( {3{\mkern 1mu} c_{1} + 8{\mkern 1mu} c_{2} } \right)w - c_{2} {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} } \right)} \right)\theta + \left( {4w - 3c_{2} } \right)c_{1} } \right)\).

Conditional Solution 1

When \(\lambda_{1} = 0,\lambda_{2} = 0,\lambda_{3} = 0,\lambda_{4} = 0\) we derive a conditional solution with only demand of on-premises software. And the prices are \(p_{1}^{m*} = \frac{{c_{2} \theta {\mkern 1mu} \left( {c_{1} + 2{\mkern 1mu} c_{2} - u} \right)}}{{u - c_{1} }}\), \(p_{2}^{m*} = \frac{{u((c_{2} (1 - \theta ) + c_{3} \eta + tw\theta + c_{1} )(c_{1} - u) - 2\theta c_{2}^{2} )}}{{(u + 2tw\theta )(c_{1} - u)}}\). The demand of SaaS is \(d_{1}^{m*} = 0\).

Conditional solution 2

\(\eta_{1}^{m} < \eta^{m} < \eta_{2}^{m}\), on-premises software compete with the SaaS. The prices are \(p_{1}^{m*} = \frac{{c_{2} {\mkern 1mu} \left( {A_{3} u^{2} + B_{3} u - 2{\mkern 1mu} c_{1}^{2} tw\theta } \right)}}{{ - 2u\left( {w - c_{2} } \right)\left( {u - c_{1} } \right)}},p_{2}^{m*} = c_{1}\)

\(A_{3} = \left( { - \left( {\theta + 1} \right)c_{2} + \theta {\mkern 1mu} w - c3_{3} \eta^{m} } \right)\), \(B_{3} = \left( {2{\mkern 1mu} c_{2}^{2} \theta + \left( {\left( {c_{1} - 4{\mkern 1mu} w} \right)\theta + c_{1} } \right)c_{2} + c_{1} {\mkern 1mu} \left( {c_{3} {\mkern 1mu} \eta^{m} + \theta {\mkern 1mu} w} \right)} \right)\)

Conditional solution 3

\(\eta^{m} > \eta_{2}^{m}\), customized SaaS expel the traditional software. We have \(p_{2}^{m*} = \frac{{A_{4} u^{2} + B_{4} u + 4c_{1} \theta wt(c_{1} + c_{2} )^{2} }}{{4c_{1} w\theta t(c_{1} + c_{2} ) + c_{2} \theta u(c_{1} + 2c_{2} - u) - 2u\theta wt(3c_{1} + 2c_{2} - u) + 2c_{3} u\eta (u - c_{1} )}}\).

\(p_{1}^{m*} = 0\).

$$A_{4} = (c_{2} - 2w)(c_{2} - c_{1} )\theta + 2c_{3} \eta^{m} (c_{1} + c_{2} )$$
$$B_{4} = ((c_{2} (c_{1} - c_{2} ) - 2w(3c_{1} - c_{2} ))(c_{1} + 2c_{2} ) + 4c_{1} c_{2} w)\theta - 2c_{1} c_{3} (c_{1} + c_{2} )\eta^{m}$$

We refer to the numerical simulation for the comparison of profits.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Shu, W. & Owusu, A.O. An analysis of product strategy in cloud transition considering SaaS customization. Inf Syst E-Bus Manage 19, 281–311 (2021). https://doi.org/10.1007/s10257-020-00499-9

Download citation

Keywords

  • Product strategy
  • Pricing
  • SaaS customization
  • Cloud computing
  • Market structure