Skip to main content
Log in

A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, the Fokas unified method is used to analyze the initial-boundary value for the Chen- Lee-Liu equation

$$i{\partial _t}u + {\partial_{xx}u - i |u{|^2}{\partial _x}u = 0}$$

on the half line (−∞, 0] with decaying initial value. Assuming that the solution u(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ. The jump matrix has explicit (x, t) dependence and is given in terms of the spectral functions {a(λ), b(λ)} and {A(λ), B(λ)}, which are obtained from the initial data u0(x) = u(x, 0) and the boundary data g0(t) = u(0, t), g1(t) = ux(0, t), respectively. The spectral functions are not independent, but satisfy a so-called global relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, V.E., Khabibullin, I.T. Boundary conditions for integrable chains. (Russian) Funktsional. Anal.i Prilozhen. 31(2): 1–14 (1997), translation in Funct. Anal. Appl., 31 (2): 75–85 (1997)

    Article  MathSciNet  Google Scholar 

  2. Chen, F., Lu, C.N., Yang, H.W. Time-space fractional (2+1) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions. Adv. Diff. Equs., 56:(2018)

  3. Chen, H.H., Lee, Y.C., Liu, C.S. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr., 20: 490–492 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui, Y.J. Existence of Solutions For Coupled Integral Boundary Value Problem At Resonance. Publ. Mathe-Debrecen, 89: 73–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, Y.J. Uniqueness of solution for boundary value problems for fractional differential Equations. Appl. Math. Lett., 51: 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, Y.J., Zou, Y.M. An Existence And Uniqueness Theorem for a Second Order Nonlinear System with Coupled Integral Boundary Value Conditions. Appl. Math. Comput., 256: 438–444 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Deift, P., Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math., 56 (8): 1029–1077 (2003)

    Article  MATH  Google Scholar 

  8. Ding, S.F., Huang, H.J., Xu, X.Z., Wang, J. Polynomial Smooth Twin Support Vector Machines. Appl. Math. Inf. Sci., 8,4: 2063–2071 (2014)

    Google Scholar 

  9. Dong, H.H., Chen, T.T., Chen, L.F., Zhang, Y. A new integrable symplectic map and the lie point symmetry associated with nonlinear lattice equations. J. Nonlinear Sci. Appl., 9: 5107–5118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, H.H., Guo, B.Y., Yin, B.S. Generalized Fractional Supertrace Identity for Hamiltonian Structure of Nls-Mkdv Hierarchy With Self-consistent Sources. Anal. Math. Phys., 6, 2: 199–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, E.G. A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J. Math. Phys., 42: 4327–4344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, E.G. Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure. J. Phys. A: Math. Gen., 34: 513–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, Y., Dong, H.H., Hou, Y.J., Kong, Y. Frobenius Integrable Decompositions Of Nonlinear Evolution Equations With Modified Term. Appl. Math. Comput., 226: 435–440 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Fokas, A.S. On a class of physically important integrable equations. Phys. D., 87: 145–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fokas, A.S. A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond., A 453: 1411–1443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fokas, A.S. Two dimensional linear PDEs in a convex ploygon. Proc. R. Soc. Lond. A., 457: 371–393 (2001)

    Article  Google Scholar 

  17. Fokas, A.S., Its, A.R. The nonlinear Schrödinger equation on the interval. J. Phys. A., 37: 6091–6114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerdjikov, V.S., Ivanov, I. A quadratic pencil of general type and nonlinear evolution equations: II, Hierarchies of Hamiltonian structures. J. Phys. Bulg., 10: 130–143 (1983)

    MathSciNet  Google Scholar 

  19. Guo M., Zhang, Y., Wang, M., Chen, Y.D., Yang, H.W. A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism. Comput. Math. Appl., 75: 3589 C 3603 (2018)

    MathSciNet  Google Scholar 

  20. Kaup, D.J., Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys., 19: 798–801 (1978)

    Article  MATH  Google Scholar 

  21. Kawata, T., Kobayashi, N., Inoue, H. Soliton solution of the derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn., 46: 1008–1015 (1979)

    Article  MATH  Google Scholar 

  22. Kitaev, A.V., Vartanian, A.H. Higher order asymptotics of the modified non-linear Schrödinger equation. Comm. Partial Dif. Equations, 25: 1043–1098 (2000)

    Article  MATH  Google Scholar 

  23. Kundu, A., Strampp, W., Oevel, W. Gauge transformations of constrained KP flows: new integrable hierarchies. J. Math. Phys., 36: 2972–2984 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenells, J. The derivative nonlinear Schrödinger equation on the half-line. Physica. D., 237: 3008–3019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenells, J., Fokas, A.S. On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity, 22: 709–722 (2009)

    Article  MATH  Google Scholar 

  26. Lenells, J., Fokas, A.S. An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons. Inverse Probl., 25, 115006: 1–32 (2009)

    MATH  Google Scholar 

  27. Wang, D.S., Wang, X.L. Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear. Anal-Real. 41: 334–361 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, D.S., Wei, X.Q. Integrability and exact solutions of a two-component Korteweg-de Vries system, Appl. Math. Lett. 51: 60–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, X.X. An Integrable Coupling Hierarchy of the Mkdv-integrable Systems, Its Hamiltonian Structure and Corresponding Nonisospectral Integrable Hierarchy. Appl. Math. and Comput., 216, 1: 344–353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zakharov, V.E., Shabat, A. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, I and II. Funct. Anal. Appl. 8: 226–235 (1974)

    Article  MATH  Google Scholar 

  31. Zhang, N. A Riemann-Hilbert approach to complex Sharma-Tasso-Olver equation on half line. Commun. Theor. Phys., 68: 580–594 (2017)

    Article  MATH  Google Scholar 

  32. Zhang, T.Q., Meng, X.Z., Zhang, T.H., Song, Y. Global Dynamics for a New High-dimensional Sir Model with Distributed Delay. Appl. Math. Comput., 218, 24: 11806–11819 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Additional information

Supported by the National Natural Science Foundation of China (No.11271008, 61072147, 11671095) and SDUST Research Fund (No.2018TDJH101).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Xia, Tc. & Fan, Eg. A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line. Acta Math. Appl. Sin. Engl. Ser. 34, 493–515 (2018). https://doi.org/10.1007/s10255-018-0765-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-018-0765-7

Keywords

2000 MR Subject Classification

Navigation