Cauchy-Born Rule and the Stability of Crystalline Solids: Dynamic Problems

  • E Wei-nan*
  • Ming Ping-bing**
Original Papers


We study continuum and atomistic models for the elastodynamics of crystalline solids at zero temperature. We establish sharp criterion for the regime of validity of the nonlinear elastic wave equations derived from the well-known Cauchy-Born rule.


Crystal elasticity Cauchy-Born rule stability of crystals 

2000 MR Subject Classification

35L70 74E15 74J30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., Fournier, J.J.F. Sobolev spaces. 2nd ed. Academic Press, 2003Google Scholar
  2. 2.
    Ashcroft. N.W., Mermin, N.D. Solid state physics. Saunders College Publishing, 1976Google Scholar
  3. 3.
    Blanc, X., Le Bris, C., Lions, P.L. From molecular models to continuum mechanics. Arch. Ration. Mech. Anal., 164(4):341–381 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Born, M. Dynamik der krystallgitter. B.G. Teubner, Leipzig–Berlin, 1915Google Scholar
  5. 5.
    Born, M., Huang, K. Dynamical theory of crystal lattices. Oxford University Press, 1954Google Scholar
  6. 6.
    Braides, A., Dal Maso, G., Garroni, A. Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal., 146(1):23–58 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cauchy, A.L. Sur l'equilibre et le mouvement d'un système de points materiels sollicités par forces d'attraction ou de répulsion mutuelle. Ex. de Math., 3:187–213 (1828)Google Scholar
  8. 8.
    Conti, S., Dolzmann, G., Kirchheim, B., Müller, S. Sufficient conditions for the validity of the cauchy-born rule close to SO(n). J. Eur. Math. Soc., 8(3):515–530 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dafermos, C.M., Hrusa, W.J. Energy methods for quasilinear hyperbolic initial-boundary value problems. applications to elastodynamics. Arch. Ration. Mech. Anal., 87(3):267–292 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    E, W., Liu, J.G. Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal., 32(4):1017–1057 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    E, W., Ming, P.B. Cauchy-born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal., 183(2):241–297 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ericksen, J.L. The Cauchy and born hypotheses for crystals. in: phase transformations and material instabilities in solids. ed. by M.E. Gurtin, Academic Press, 1984, 61–77Google Scholar
  13. 13.
    Friesecke, G., Theil, F. Validity and failure of the cauchy-born hypothesis in a two dimensional mass-spring lattice. J. Nonlinear Sci., 12(5):445–478 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hughes, T.J.R., Kato, T., Marsden, J. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal., 63(3):273–294 (1977)CrossRefzbMATHGoogle Scholar
  15. 15.
    Keating, P.N. Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev., 145(2):637–645 (1965)CrossRefGoogle Scholar
  16. 16.
    Lennard-Jones, J.E., Devonshire, A.F. Critical and cooperative phenomena. III. a theory of melting and the structure of liquids. Proc. Roy. Soc. Lond., A169(938):317–338 (1939)Google Scholar
  17. 17.
    Liu, F., Ming, P.B. Crystal stability and instability. In preparationGoogle Scholar
  18. 18.
    Love, A.E.H. A treatise on the mathematical theory of elasticity. 4th ed. Cambridge University Press, 1927Google Scholar
  19. 19.
    Majda, A. Compressible fluid flow and systems of conservation laws in several space variables. Springer- Verlag, New York, 1984Google Scholar
  20. 20.
    Maradudin, A.A., Vosko, S.H. Symmetry properties of the normal vibrations of a crystal. Rev. Mod. Phy., 40(1):1–37 (1968)CrossRefGoogle Scholar
  21. 21.
    Morrey, C.B. Multiple integrals in the calculus of variations. Springer-Verlag, New York, 1966Google Scholar
  22. 22.
    Musgrave, M.J.P. Crystal acoustics: Introduction to the study of elastic waves and vibrations in crystals. Holden-Day, Inc., San Francisco, 1970Google Scholar
  23. 23.
    Parry, G.P. On Phase transitions involving internal strain. Int. J. Solids Structures, 17(4):361–378 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pitteri, M. On ν + 1−Lattices. J. of Elasticity, 15(1):3–25 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pitteri, M., Zanzotto, G. Continuum models for phase transitions and twinning in crystals. Chapman & Hall/CRC Press LLC, 2003Google Scholar
  26. 26.
    Ruelle, D. Statistical mechanics: rigorous results. Imperial College Press, 3rd ed. 1998Google Scholar
  27. 27.
    Schochet, S. The incompressible limit in nonlinear elasticity. Comm. Math. Phys., 102(2):207–215 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Shatah, J., Struwe, M. Geometric wave equations. American Mathematical Society, Providence, R.I. 2000Google Scholar
  29. 29.
    Stakgold, I. The Cauchy relations in a molecular theory of elasticity. Quart. Appl. Math., 8(2):169–186 (1950)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Strang, G. Accurate partial difference methods. ii: non-linear problems. Numer. Math., 6(1):37–46 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Wallace, D.C. Thermodynamics of crystals. John Wiley & Sons Inc., New York, 1972Google Scholar
  32. 32.
    Weiner, J.H. Statistical mechanics of elasticity. A Wiley-Interscience Publication, 1983Google Scholar
  33. 33.
    Xuan, Y., E, W. Instability of crystalline solids under stress. In preparationGoogle Scholar
  34. 34.
    Zanzotto, G. On the material symmetry group of elastic crystals and the born rule. Arch. Ration. Mech. Anal., 121(1):1–36 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Zanzotto, G. The cauchy and born hypothesis, nonlinear elasticity and mechanical twinning in crystals. Acta Cryst., A52(6):839–849 (1996)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of Mathematics and PACMPrinceton UniversityPrinceton
  2. 2.LSEC, Institute of Computational Mathematics and Scientific/Engineering ComputingAcademy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingChina

Personalised recommendations