Advertisement

Acta Mathematicae Applicatae Sinica, English Series

, Volume 19, Issue 3, pp 459–466 | Cite as

Global Approximately Controllability and Finite Dimensional Exact Controllability of Semilinear Heat Equation in R N

Original papers
  • 52 Downloads

Abstract

We prove the approxomate controllability and finite dimensional exact controllability of semilinear heat equation in R N with the same control by introducing the weighted Soblev spaces.

Keywords

Semilinear heat equation controllability 

2000 MR Subject Classification

35K 93B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro, C., Zuazua, E. Boundary controllability of a Hybrid system consisting in two flexible beams connected by a point mass. SIAM J. Control Optim., 36(5):1576–1595 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Curtain, R.F., Pritchard, A.J. Infinite dimensional linear system theory. Springer–Verlag, Berlin, Heidelberg, New York, 1978Google Scholar
  3. 3.
    Ladyzenskaja, O.A., Solonnikov, V.A. Linear and quasi–linear equations of parabolic type. American Mathematical Society Providence, Rhode Island, 1968Google Scholar
  4. 4.
    Lopez, A., Zhang, X., Zuazua, E. Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl., 79, 8:7410–808 (2000)CrossRefGoogle Scholar
  5. 5.
    Luz De Teresa. Approximately controllability of a semilinear heat equation in R N. SIAM J. Control Optim., 36(6):2128–2147 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Temam, Roger. Infinite dimensional dynamical systems in mechanics and physics. Springer–Verlag, New York, 1988Google Scholar
  7. 7.
    Zuazua, E. Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl., 76, 237–264 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsZhongshan UniversityGuangzhouChina

Personalised recommendations