Covariantly functorial wrapped Floer theory on Liouville sectors

Abstract

We introduce a class of Liouville manifolds with boundary which we call Liouville sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-closed map for Liouville sectors, and we show that these invariants are covariantly functorial with respect to inclusions of Liouville sectors. From this foundational setup, a local-to-global principle for Abouzaid’s generation criterion follows.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci., 112 (2010), 191–240, MR 2737980 (2012h:53192).

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    M. Abouzaid, Co-sheaves, families of Lagrangians, and the Fukaya category, unpublished manuscript, pp. 1–21, 2011

  3. 3.

    M. Abouzaid, A cotangent fibre generates the Fukaya category, Adv. Math., 228 (2011), 894–939, MR 2822213 (2012m:53192).

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    M. Abouzaid, A topological model for the Fukaya categories of plumbings, J. Differ. Geom., 87 (2011), 1–80, MR 2786590 (2012h:53193).

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    M. Abouzaid, On the wrapped Fukaya category and based loops, J. Symplectic Geom., 10 (2012), 27–79, MR 2904032.

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    M. Abouzaid, Symplectic cohomology and Viterbo’s theorem, in Free Loop Spaces in Geometry and Topology, IRMA Lect. Math. Theor. Phys., vol. 24, pp. 271–485, Eur. Math. Soc., Zürich, 2015, MR 3444367.

    Google Scholar 

  7. 7.

    M. Abouzaid and S. Ganatra, Generating Fukaya categories of Landau–Ginzburg models, in preparation.

  8. 8.

    M. Abouzaid and P. Seidel, Lefschetz fibration techniques in wrapped Floer cohomology, in preparation.

  9. 9.

    M. Abouzaid and P. Seidel, An open string analogue of Viterbo functoriality, Geom. Topol., 14 (2010), 627–718, MR 2602848 (2011g:53190).

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    J. F. Adams, On the cobar construction, Proc. Natl. Acad. Sci. USA, 42 (1956), 409–412, MR 0079266 (18, 59c).

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    F. Bourgeois, T. Ekholm and Y. Eliashberg, Effect of Legendrian surgery, Geom. Topol., 16 (2012), 301–389, with an appendix by Sheel Ganatra and Maksim Maydanskiy, MR 2916289.

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    K. Cieliebak, A. Floer and H. Hofer, Symplectic homology. II. A general construction, Math. Z., 218 (1995), 103–122, MR 1312580.

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds, American Mathematical Society Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012, MR 3012475.

    Google Scholar 

  14. 14.

    V. Colin and K. Honda, Foliations, contact structures and their interactions in dimension three, arxiv preprint (2018), pp. 1–25, arXiv:1811.09148v1.

  15. 15.

    V. Drinfeld, DG quotients of DG categories, J. Algebra, 272 (2004), 643–691, MR 2028075.

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    T. Ekholm and Y. Lekili, Duality between Lagrangian and Legendrian invariants, arxiv preprint (2017), pp. 1–104, arXiv:1701.01284.

  17. 17.

    T. Ekholm, L. Ng and V. Shende, A complete knot invariant from contact homology, Invent. Math., 211 (2018), 1149–1200, MR 3763406.

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Y. Eliashberg, Symplectic geometry of plurisubharmonic functions, in Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 488, pp. 49–67, Kluwer Acad. Publ., Dordrecht, 1997, with notes by Miguel Abreu, MR 1461569.

    Google Scholar 

  19. 19.

    Y. Eliashberg, Weinstein manifolds revisited, in Modern Geometry: A Celebration of the Work of Simon Donaldson, Proc. Sympos. Pure Math., vol. 99, pp. 59–82, Amer. Math. Soc., Providence, 2018, MR 3838879.

    Google Scholar 

  20. 20.

    Y. Eliashberg and M. Gromov, Convex symplectic manifolds, in Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, pp. 135–162, Amer. Math. Soc., Providence, 1991, MR 1128541.

    Google Scholar 

  21. 21.

    A. Floer and H. Hofer, Symplectic homology. I. Open sets in \(\mathbf{C}^{n}\), Math. Z., 215 (1994), 37–88, MR 1254813.

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    A. Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differ. Geom., 30 (1989), 207–221, MR 1001276 (90d:58029).

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    K. Fukaya and Y.-G. Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math., 1 (1997), 96–180, MR 1480992.

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society/International Press, Providence/Somerville, 2009, MR 2553465.

    Google Scholar 

  25. 25.

    S. Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, arxiv preprint (2013), pp. 1–166, arXiv:1304.7312v1.

  26. 26.

    S. Ganatra, Cyclic homology, \(S^{1}\)-equivariant Floer cohomology, and Calabi–Yau structures, preprint (2019), pp. 1–70, http://sheelganatra.com/circle_action/.

  27. 27.

    Y. Gao, Wrapped Floer cohomology and Lagrangian correspondences, arxiv preprint (2017), pp. 1–70, arXiv:1703.04032.

  28. 28.

    Y. Gao, Functors of wrapped Fukaya categories from Lagrangian correspondences, arxiv preprint (2017), pp. 1–144, arXiv:1712.00225.

  29. 29.

    H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  30. 30.

    E. Giroux, Convexité en topologie de contact, Comment. Math. Helv., 66 (1991), 637–677.

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Y. Groman, Floer theory on open manifolds, arxiv preprint (2017), pp. 1–76, arXiv:1510.04265v5.

  32. 32.

    A. Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra, 175 (2002), 207–222, special volume celebrating the 70th birthday of Professor Max Kelly. MR 1935979.

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    M. Kontsevich, Homological algebra of mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 120–139, Birkhäuser, Basel, 1995, MR 1403918 (97f:32040).

    Google Scholar 

  34. 34.

    J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, 2009, MR 2522659 (2010j:18001).

    Google Scholar 

  35. 35.

    J. Lurie, Higher algebra, available for download (2017), pp. 1–1553.

  36. 36.

    V. Lyubashenko, \(A_{\infty }\)-morphisms with several entries, Theory Appl. Categ., 30 (2015), 1501–1551, MR 3421458.

    MathSciNet  MATH  Google Scholar 

  37. 37.

    V. Lyubashenko and O. Manzyuk, Quotients of unital \(A_{\infty }\)-categories, Theory Appl. Categ., 20 (2008), 405–496, MR 2425553.

    MathSciNet  MATH  Google Scholar 

  38. 38.

    V. Lyubashenko and S. Ovsienko, A construction of quotient \(A_{\infty }\)-categories, Homol. Homotopy Appl., 8 (2006), 157–203, MR 2259271.

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    M. Maydanskiy and P. Seidel, Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol., 3 (2010), 157–180, MR 2608480.

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    D. Nadler, Arboreal singularities, Geom. Topol., 21 (2017), 1231–1274, MR 3626601.

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic Geometry and Floer Homology, Ensaios Mat., vol. 7, pp. 51–91, Soc. Brasil. Mat., Rio de Janeiro, 2004, MR 2100955.

    Google Scholar 

  42. 42.

    A. Oancea, The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann., 334 (2006), 65–89, MR 2208949.

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol., 20 (2016), 779–1034, MR 3493097.

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    A. F. Ritter, Topological quantum field theory structure on symplectic cohomology, J. Topol., 6 (2013), 391–489, MR 3065181.

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Commun. Pure Appl. Math., 45 (1992), 1303–1360, MR 1181727 (93g:58028).

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. Fr., 128 (2000), 103–149, MR 1765826 (2001c:53114).

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    P. Seidel, Fukaya categories and deformations, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 351–360, Higher Ed. Press, Beijing, 2002, MR 1957046.

    Google Scholar 

  48. 48.

    P. Seidel, \(A_{\infty }\)-subalgebras and natural transformations, Homol. Homotopy Appl., 10 (2008), 83–114, MR 2426130 (2010k:53154).

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    P. Seidel, A biased view of symplectic cohomology, in Current Developments in Mathematics, 2006, pp. 211–253, Int. Press, Somerville, 2008, MR 2459307.

    Google Scholar 

  50. 50.

    P. Seidel, Fukaya Categories and Picard-Lefschetz Theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008, MR 2441780 (2009f:53143).

    Google Scholar 

  51. 51.

    P. Seidel, Fukaya \(A_{\infty }\)-structures associated to Lefschetz fibrations. I, J. Symplectic Geom., 10 (2012), 325–388, MR 2983434.

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    V. Shende, Arboreal singularities from Lefschetz fibrations, arxiv preprint (2018), pp. 1–15, arXiv:1809.10359v1.

  53. 53.

    N. Sheridan, Formulae in noncommutative Hodge theory, arxiv preprint (2015), pp. 1–54, arXiv:1510.03795.

  54. 54.

    J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in Holomorphic Curves in Symplectic Geometry, Progr. Math., vol. 117, pp. 165–189, Birkhäuser, Basel, 1994.

    Google Scholar 

  55. 55.

    N. Spaltenstein, Resolutions of unbounded complexes, Compos. Math., 65 (1988), 121–154, MR 932640.

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Z. Sylvan, On partially wrapped Fukaya categories, J. Topol., 12 (2019), 372–441, MR 3911570.

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    C.H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117–2202, MR 2350473.

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    T. Tradler, Infinity-inner-products on \(A\)-infinity-algebras, J. Homotopy Relat. Struct., 3 (2008), 245–271, MR 2426181.

    MathSciNet  MATH  Google Scholar 

  59. 59.

    J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque, 239 (1996), xii+253 pp., with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis, MR 1453167.

  60. 60.

    C. Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., 9 (1999), 985–1033, MR 1726235.

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    A. Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differ. Equ., 33 (1979), 353–358, MR 543704.

    MathSciNet  MATH  Article  Google Scholar 

  62. 62.

    E. C. Zeeman, On the dunce hat, Topology, 2 (1964), 341–358, MR 0156351.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Pardon.

Additional information

S. G. was partially supported by the National Science Foundation through a postdoctoral fellowship with grant number DMS-1204393 and under agreement number DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

This research was conducted during the period J. P. served as a Clay Research Fellow and was partially supported by a Packard Fellowship and by the National Science Foundation under the Alan T. Waterman Award, Grant No. 1747553.

V. S. is partially supported by the NSF grant DMS-1406871 and a Sloan fellowship.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganatra, S., Pardon, J. & Shende, V. Covariantly functorial wrapped Floer theory on Liouville sectors. Publ.math.IHES 131, 73–200 (2020). https://doi.org/10.1007/s10240-019-00112-x

Download citation