Invariant and stationary measures for the Open image in new window action on Moduli space

Article
  • 10 Downloads

Abstract

We prove some ergodic-theoretic rigidity properties of the action of Open image in new window on moduli space. In particular, we show that any ergodic measure invariant under the action of the upper triangular subgroup of Open image in new window is supported on an invariant affine submanifold.

The main theorems are inspired by the results of several authors on unipotent flows on homogeneous spaces, and in particular by Ratner’s seminal work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABEM]
    J. Athreya, A. Bufetov, A. Eskin and M. Mirzakhani, Lattice point asymptotics and volume growth on Teichmüller space, Duke Math. J., 161 (2012), 1055–1111. MathSciNetMATHGoogle Scholar
  2. [At]
    G. Atkinson, Recurrence of co-cycles and random walks, J. Lond. Math. Soc. (2), 13 (1976), 486–488. MathSciNetMATHGoogle Scholar
  3. [Ath]
    J. Athreya, Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedic., 119 (2006), 121–140. MATHGoogle Scholar
  4. [AthF]
    J. Athreya and G. Forni, Deviation of ergodic averages for rational polygonal billiards, Duke Math. J., 144 (2008), 285–319. MathSciNetMATHGoogle Scholar
  5. [ACO]
    L. Arnold, N. Cong and V. O. Jordan, Normal form for linear cocycles, Random Oper. Stoch. Equ., 7 (1999), 301–356. MathSciNetGoogle Scholar
  6. [AEZ]
    J. Athreya, A. Eskin and A. Zorich, Rectangular billiards and volumes of spaces of quadratic differentials on Open image in new window, Ann. Sci. Éc. Norm. Supér. (4), 49 (2016), 1311–1386 (with an appendix by Jon Chaika). MathSciNetMATHGoogle Scholar
  7. [ANW]
    D. Aulicino, D. Nguyen and A. Wright, Classification of higher rank orbit closures in H^{odd}(4), J. Eur. Math. Soc., 18 (2016), 1855–1872. MathSciNetMATHGoogle Scholar
  8. [AEM]
    A. Avila, A. Eskin and M. Moeller, Symplectic and isometric SL(2, R) invariant subbundles of the Hodge bundle, J. Reine Angew. Math., 732 (2017), 1–20. MathSciNetMATHGoogle Scholar
  9. [AG]
    A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. Math. (2), 178 (2013), 385–442. MathSciNetMATHGoogle Scholar
  10. [AGY]
    A. Avila, S. Gouëzel and J-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143–211. MATHGoogle Scholar
  11. [AV2]
    A. Avila and M. Viana, Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., 181 (2010), 115–189. MathSciNetMATHGoogle Scholar
  12. [ASV]
    A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps, Astérisque, 358 (2013), 1–12. MathSciNetMATHGoogle Scholar
  13. [AV1]
    A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1–56. MathSciNetMATHGoogle Scholar
  14. [Ba]
    M. Bainbridge, Billiards in L-shaped tables with barriers, Geom. Funct. Anal., 20 (2010), 299–356. MathSciNetMATHGoogle Scholar
  15. [BaM]
    M. Bainbridge and M. Möller, Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3, Acta Math., 208 (2012), 1–92. MathSciNetMATHGoogle Scholar
  16. [BoM]
    I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. Math. (2), 172 (2010), 139–185. MathSciNetMATHGoogle Scholar
  17. [BQ]
    Y. Benoist and J-F. Quint, Mesures Stationnaires et Fermés Invariants des espaces homogènes (French) [Stationary measures and invariant subsets of homogeneous spaces], Ann. Math. (2), 174 (2011), 1111–1162. MathSciNetMATHGoogle Scholar
  18. [BG]
    A. Bufetov and B. Gurevich, Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials, Mat. Sb., 202 (2011), 3–42 (Russian), translation in Sb. Math. 202 (2011), 935–970. MathSciNetMATHGoogle Scholar
  19. [Ca]
    K. Calta, Veech surfaces and complete periodicity in genus two, J. Am. Math. Soc., 17 (2004), 871–908. MathSciNetMATHGoogle Scholar
  20. [CK]
    V. Climenhaga and A. Katok, Measure theory through dynamical eyes, arXiv:1208.4550 [math.DS].
  21. [CW]
    K. Calta and K. Wortman, On unipotent flows in H(1, 1), Ergod. Theory Dyn. Syst., 30 (2010), 379–398. MathSciNetMATHGoogle Scholar
  22. [Dan1]
    S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis, Invent. Math., 51 (1979), 239–260. MathSciNetMATHGoogle Scholar
  23. [Dan2]
    S. G. Dani, Invariant measures and minimal sets of horoshperical flows, Invent. Math., 64 (1981), 357–385. MathSciNetMATHGoogle Scholar
  24. [Dan3]
    S. G. Dani, On orbits of unipotent flows on homogeneous spaces, Ergod. Theory Dyn. Syst., 4 (1984), 25–34. MathSciNetMATHGoogle Scholar
  25. [Dan4]
    S. G. Dani, On orbits of unipotent flows on homogenous spaces II, Ergod. Theory Dyn. Syst., 6 (1986), 167–182. MATHGoogle Scholar
  26. [De]
    M. Deza and E. Deza, Encyclopaedia of Distances, 3rd ed., Springer, Berlin, 2014. MATHGoogle Scholar
  27. [DM1]
    S. G. Dani and G. A. Margulis, Values of quadratic forms at primitive integral points, Invent. Math., 98 (1989), 405–424. MathSciNetMATHGoogle Scholar
  28. [DM2]
    S. G. Dani and G. A. Margulis, Orbit closures of generic unipotent flows on homogeneous spaces of Open image in new window, Math. Ann., 286 (1990), 101–128. MathSciNetMATHGoogle Scholar
  29. [DM3]
    S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Indian Acad. Sci. J., 101 (1991), 1–17. MathSciNetMATHGoogle Scholar
  30. [DM4]
    S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, in I. M. Gelfand Seminar, pp. 91–137, Am. Math. Soc., Providence, 1993. Google Scholar
  31. [Ef]
    E. G. Effros, Transformation groups and \(C^{*}\)-algebras, Ann. Math. (2), 81 (1965), 38–55. MathSciNetMATHGoogle Scholar
  32. [EKL]
    M. Einsiedler, A. Katok and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. Math. (2), 164 (2006), 513–560. MathSciNetMATHGoogle Scholar
  33. [EL]
    M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., vol. 10, pp. 155–241, Am. Math. Soc., Providence, 2010. Google Scholar
  34. [EMa]
    A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergod. Theory Dyn. Syst., 21 (2001), 443–478. MathSciNetMATHGoogle Scholar
  35. [EMM]
    A. Eskin, J. Marklof and D. Morris, Unipotent flows on the space of branched covers of Veech surfaces, Ergod. Theory Dyn. Syst., 26 (2006), 129–162. MathSciNetMATHGoogle Scholar
  36. [EMM1]
    A. Eskin, G. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. Math. (2), 147 (1998), 93–141. MathSciNetMATHGoogle Scholar
  37. [EMM2]
    A. Eskin, G. Margulis and S. Mozes, Quadratic forms of signature \((2,2)\) and eigenvalue spacings on flat 2-tori, Ann. Math. (2), 161 (2005), 679–725. MathSciNetMATHGoogle Scholar
  38. [EMiMo]
    A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the Open image in new window action on moduli space, Ann. Math. (2), 182 (2015), 673–721. MathSciNetMATHGoogle Scholar
  39. [EMR]
    A. Eskin, M. Mirzakhani and K. Rafi, Counting closed geodesics in strata, 2012, arXiv:1206.5574 [math.GT].
  40. [EMS]
    A. Eskin, H. Masur and M. Schmoll, Billiards in rectangles with barriers, Duke Math. J., 118 (2003), 427–463. MathSciNetMATHGoogle Scholar
  41. [EMZ]
    A. Eskin, H. Masur and A. Zorich, Moduli spaces of Abelian differentials: the principal boundary, counting problems and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci., 97 (2003), 61–179. MathSciNetMATHGoogle Scholar
  42. [EMat]
    A. Eskin and C. Matheus, Semisimplicity of the Lyapunov spectrum for irreducible cocycles, preprint. Google Scholar
  43. [Fo]
    G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math., 155 (2002), 1–103. MathSciNetMATHGoogle Scholar
  44. [Fo2]
    G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems, vol. 1B, pp. 549–580, Elsevier, Amsterdam, 2006. Google Scholar
  45. [FoM]
    G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, 2008, arXiv:0810.0023.
  46. [FoMZ]
    G. Forni, C. Matheus and A. Zorich, Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergod. Theory Dyn. Syst., 34 (2014), 353–408. MathSciNetMATHGoogle Scholar
  47. [Fu]
    A. Furman, Random walks on groups and random transformations, in Handbook of Dynamical Systems, vol. 1A, pp. 931–1014, North-Holland, Amsterdam, 2002. Google Scholar
  48. [F1]
    H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. Math., 77 (1963), 335–386. MathSciNetMATHGoogle Scholar
  49. [F2]
    H. Furstenberg, Non commuting random products, Trans. Am. Math. Soc., 108 (1963), 377–428. MATHGoogle Scholar
  50. [Fi1]
    S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617–670. MathSciNetMATHGoogle Scholar
  51. [Fi2]
    S. Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. Math. (2), 183 (2016), 681–713. MathSciNetMATHGoogle Scholar
  52. [GM]
    I. Ya. Gol’dsheid and G. A. Margulis, Lyapunov indices of a product of random matrices, Russ. Math. Surv., 44 (1989), 11–71. Google Scholar
  53. [GR1]
    Y. Guivarc’h and A. Raugi, Frontiere de Furstenberg, propriotes de contraction et theoremes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., 69 (1985), 187–242. MATHGoogle Scholar
  54. [GR2]
    Y. Guivarc’h and A. Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes (French) [Contraction properties of an invertible matrix semigroup. Lyapunov coefficients of a product of independent random matrices], Isr. J. Math., 65 (1989), 165–196. MATHGoogle Scholar
  55. [HLM]
    P. Hubert, E. Lanneau and M. Möller, Open image in new window-orbit closures via topological splittings, in Geometry of Riemann Surfaces and Their Moduli Spaces, Surv. Differ. Geom., vol. 14, pp. 145–169, International Press, Somerville, 2009. Google Scholar
  56. [HST]
    P. Hubert, M. Schmoll and S. Troubetzkoy, Modular fibers and illumination problems, Int. Math. Res. Not., 2008, rnn011 (2008). MathSciNetMATHGoogle Scholar
  57. [Ka]
    M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Am. Math. Soc., 53 (1947), 1002–1010. MathSciNetMATHGoogle Scholar
  58. [Ke]
    H. Kesten, Sums of stationary sequences cannot grow slower than linearly, Proc. Am. Math. Soc., 49 (1975), 205–211. MathSciNetMATHGoogle Scholar
  59. [Kn]
    A. Knapp, Lie Groups, Beyond an Introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002. MATHGoogle Scholar
  60. [KS]
    B. Kalinin and V. Sadovskaya, Cocycles with one exponent over partially hyperbolic systems, Geom. Dedic., 167 (2013), 167–188. MathSciNetMATHGoogle Scholar
  61. [KH]
    A. Katok and B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995. Google Scholar
  62. [KuSp]
    K. Kurdyka and S. Spodzieja, Separation of real algebraic sets and the Łojasiewicz exponent, Proc. Am. Math. Soc., 142 (2014), 3089–3102. MATHGoogle Scholar
  63. [LN1]
    E. Lanneau and D. Nguyen, Teichmueller curves generated by Weierstrass Prym eigenforms in genus three and genus four, J. Topol., 7 (2014), 475–522. MathSciNetMATHGoogle Scholar
  64. [LN2]
    E. Lanneau and D. Nguyen, Complete periodicity of Prym eigenforms, Ann. Sci. Éc. Norm. Supér. (4), 49 (2016), 87–130. MathSciNetMATHGoogle Scholar
  65. [LN3]
    E. Lanneau and D. Nguyen, \({GL}^{+}(2,R)\)-orbits in Prym eigenform loci, Geom. Topol., 20 (2016), 1359–1426. MathSciNetMATHGoogle Scholar
  66. [L]
    F. Ledrappier, Positivity of the exponent for stationary sequences of matrices, in Lyapunov Exponents, Lecture Notes in Math., vol. 1186, Bremen, 1984, pp. 56–73, Springer, Berlin, 1986. Google Scholar
  67. [LS]
    F. Ledrappier and J. M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergod. Theory Dyn. Syst., 2 (1982), 203–219. MathSciNetMATHGoogle Scholar
  68. [LY]
    F. Ledrappier and L. S. Young, The metric entropy of diffeomorphisms. I, Ann. Math., 122 (1985), 503–539. MATHGoogle Scholar
  69. [M1]
    R. Mañé, A proof of Pesin’s formula, Ergod. Theory Dyn. Syst., 1 (1981), 95–102. MathSciNetMATHGoogle Scholar
  70. [M2]
    R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. MATHGoogle Scholar
  71. [Mar1]
    G. A. Margulis, On the action of unipotent groups in the space of lattices, in Lie Groups and Their Representations, Proc. of Summer School in Group Representations, Bolyai Janos Math. Soc., Akademai Kiado, Budapest, 1971, pp. 365–370, Halsted, New York, 1975. Google Scholar
  72. [Mar2]
    G. A. Margulis, Formes quadratiques indèfinies et flots unipotents sur les spaces homogènes, C. R. Acad. Sci. Paris Ser. I, 304 (1987), 247–253. MATHGoogle Scholar
  73. [Mar3]
    G. A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Subgroups, a Symposium in Honor of a Selberg, pp. 377–398, Academic Press, Boston, 1989. Google Scholar
  74. [Mar4]
    G.A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory, vol. 23, pp. 399–409, Banach Center Publ., PWN—Polish Scientific Publ., Warsaw, 1989. Google Scholar
  75. [MaT]
    G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347–392. MathSciNetMATHGoogle Scholar
  76. [Mas1]
    H. Masur, Interval exchange transformations and measured foliations, Ann. Math. (2), 115 (1982), 169–200. MathSciNetMATHGoogle Scholar
  77. [Mas2]
    H. Masur, The growth rate of trajectories of a quadratic differential, Ergod. Theory Dyn. Syst., 10 (1990), 151–176. MathSciNetMATHGoogle Scholar
  78. [Mas3]
    H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in D. Drasin (ed.) Holomorphic Functions and Moduli, vol. 1, pp. 215–228, Springer, New York, 1988. Google Scholar
  79. [MW]
    C. Matheus and A. Wright, Hodge-Teichmueller planes and finiteness results for Teichmueller curves, Duke Math. J., 164 (2015), 1041–1077. MathSciNetMATHGoogle Scholar
  80. [Mc1]
    C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Am. Math. Soc., 16 (2003), 857–885. MATHGoogle Scholar
  81. [Mc2]
    C. McMullen, Teichmüller geodesics of infinite complexity, Acta Math., 191 (2003), 191–223. MathSciNetMATHGoogle Scholar
  82. [Mc3]
    C. McMullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann., 333 (2005), 87–130. MathSciNetMATHGoogle Scholar
  83. [Mc4]
    C. McMullen, Teichmüller curves in genus two: the decagon and beyond, J. Reine Angew. Math., 582 (2005), 173–200. MathSciNetMATHGoogle Scholar
  84. [Mc5]
    C. McMullen, Teichmüller curves in genus two: torsion divisors and ratios of sines, Invent. Math., 165 (2006), 651–672. MathSciNetMATHGoogle Scholar
  85. [Mc6]
    C. McMullen, Dynamics of Open image in new window over moduli space in genus two, Ann. Math. (2), 165 (2007), 397–456. MathSciNetMATHGoogle Scholar
  86. [Mö1]
    M. Möller, Variations of Hodge structures of a Teichmüller curve, J. Am. Math. Soc., 19 (2006), 327–344. MATHGoogle Scholar
  87. [Mö2]
    M. Möller, Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math., 165 (2006), 633–649. MathSciNetMATHGoogle Scholar
  88. [Mö3]
    M. Möller, Finiteness results for Teichmüller curves, Ann. Inst. Fourier (Grenoble), 58 (2008), 63–83. MathSciNetMATHGoogle Scholar
  89. [Mö4]
    M. Möller, Linear manifolds in the moduli space of one-forms, Duke Math. J., 144 (2008), 447–488. MathSciNetMATHGoogle Scholar
  90. [Mor]
    D. W. Morris, Ratner’s Theorems on Unipotent Flows, University of Chicago Press, Chicago, 2005, arXiv:math/0310402 [math.DS]. MATHGoogle Scholar
  91. [Moz]
    S. Mozes, Epimorphic subgroups and invariant measures, Ergod. Theory Dyn. Syst., 15 (1995), 1207–1210. MathSciNetMATHGoogle Scholar
  92. [MoSh]
    S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergod. Theory Dyn. Syst., 15 (1995), 149–159. MathSciNetMATHGoogle Scholar
  93. [MZ]
    R. Zimmer and D. Witte Morris, Ergodic Theory, Groups, and Geometry, CBMS Regional Conference Series in Mathematics, vol. 109, x+87 pp. Published for the Conference Board of the Mathematical Sciences, Washington, DC; Am. Math. Soc., Providence, 2008. ISBN 978-0-8218-0980-8. MATHGoogle Scholar
  94. [NW]
    D. Nguyen and A. Wright, Non-Veech surfaces in H^hyp(4) are generic, Geom. Funct. Anal., 24 (2014), 1316–1335. MathSciNetMATHGoogle Scholar
  95. [NZ]
    A. Nevo and R. Zimmer, Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math., 138 (1999), 229–252. MathSciNetMATHGoogle Scholar
  96. [Ra1]
    M. Ratner, Rigidity of horocycle flows, Ann. Math., 115 (1982), 597–614. MathSciNetMATHGoogle Scholar
  97. [Ra2]
    M. Ratner, Factors of horocycle flows, Ergod. Theory Dyn. Syst., 2 (1982), 465–489. MathSciNetMATHGoogle Scholar
  98. [Ra3]
    M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. Math., 118 (1983), 277–313. MathSciNetMATHGoogle Scholar
  99. [Ra4]
    M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math., 101 (1990), 449–482. MathSciNetMATHGoogle Scholar
  100. [Ra5]
    M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., 165 (1990), 229–309. MathSciNetMATHGoogle Scholar
  101. [Ra6]
    M. Ratner, On Raghunathan’s measure conjecture, Ann. Math., 134 (1991), 545–607. MathSciNetMATHGoogle Scholar
  102. [Ra7]
    M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., 63 (1991), 235–280. MathSciNetMATHGoogle Scholar
  103. [R]
    V. A. Rokhlin, Lectures on the theory of entropy of transformations with invariant measures, Russ. Math. Surv., 22 (1967), 1–54. MATHGoogle Scholar
  104. [Sch]
    K. Schmidt, Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions, Ergod. Theory Dyn. Syst., 1 (1981), 223–236. MathSciNetMATHGoogle Scholar
  105. [Ve1]
    W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. Math., 15 (1982), 201–242. MathSciNetMATHGoogle Scholar
  106. [Ve2]
    W. Veech, Siegel measures, Ann. Math., 148 (1998), 895–944. MathSciNetMATHGoogle Scholar
  107. [Wr1]
    A. Wright, The field of definition of affine invariant submanifolds of the moduli space of Abelian differentials, Geom. Topol., 18 (2014), 1323–1341. MathSciNetMATHGoogle Scholar
  108. [Wr2]
    A. Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., 19 (2015), 413–438. MathSciNetMATHGoogle Scholar
  109. [WWF]
    L. Wang, X. Wang and J. Feng, Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition, Pattern Recognit., 39 (2006), 456–464. MATHGoogle Scholar
  110. [Zi1]
    R. J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. Éc. Norm. Supér., 11 (1978), 407–428. MathSciNetMATHGoogle Scholar
  111. [Zi2]
    R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. MATHGoogle Scholar
  112. [Zo]
    A. Zorich, Flat Surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, pp. 437–583, Springer, Berlin, 2006. Google Scholar

Copyright information

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations