Advertisement

Publications mathématiques de l'IHÉS

, Volume 127, Issue 1, pp 71–93 | Cite as

La conjecture du facteur direct

  • Yves André
Article

Résumé

M. Hochster a conjecturé que pour toute extension finie \(S\) d’un anneau commutatif régulier \(R\), la suite exacte de \(R\)-modules \(0\to R \to S \to S/R\to0\) est scindée. En nous appuyant sur sa réduction au cas d’un anneau local régulier \(R\) complet non ramifié d’inégale caractéristique, nous proposons une démonstration de cette conjecture dans le contexte de la théorie perfectoïde de P. Scholze. Les deux ingrédients-clé sont le « lemme d’Abhyankar perfectoïde » et l’analyse des extensions kummériennes de \(R\) par une technique d’épaississement sur des voisinages tubulaires.

Nous montrons par les mêmes techniques l’existence d’algèbres de Cohen-Macaulay pour les anneaux locaux d’inégale caractéristique. Il s’ensuit que les revêtements finis d’anneaux réguliers sont dominés par des plats.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Y. André, Le lemme d’Abhyankar perfectoïde, Publ. Math. IHES (2016),  10.1007/s10240-017-0096-x, ce volume. Google Scholar
  2. [2]
    J. Bartijn and J. Strooker, Modifications minimales, in Sém. d’algèbre de Paris, Lecture Notes in Math., vol. 1029, pp. 192–217 1983. Google Scholar
  3. [3]
    V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, vol. 33, AMS, Providence, 1990. zbMATHGoogle Scholar
  4. [4]
    B. Bhatt, Almost direct summands, Nagoya Math. J., 214 (2014), 195–204. MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Bourbaki, Algèbre commutative, chapitres 1 à 7, Masson, Paris, 1985. Google Scholar
  6. [6]
    N. Bourbaki, Algèbre, chapitre 8, nouvelle éd, Springer, Berlin, 2012. Google Scholar
  7. [7]
    T. Bridgeland and S. Iyengar, A criterion for regular local rings, C. R. Acad. Sci. Paris, Ser., 342 (2006), 723–726. CrossRefzbMATHGoogle Scholar
  8. [8]
    O. Gabber and L. Ramero, Almost Ring Theory, Lecture Notes in Math., vol. 1800, Springer, Berlin, 2003. zbMATHGoogle Scholar
  9. [9]
    D. Dobbs, On purity and related universal properties of extensions of commutative rings, Tamkang J. Math., 41 (2010), 253–259. MathSciNetzbMATHGoogle Scholar
  10. [10]
    S. Dutta, On the canonical element conjecture, Trans. Am. Math. Soc., 299 (1987), 803–811. MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. Evans and P. Griffith, The syzygy problem, Ann. Math., 114 (1981), 323–333. MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Heitmann, The direct summand conjecture in dimension three, Ann. Math., 156 (2002), 695–712. MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J., 51 (1973), 25–43. MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra, 84 (1983), 503–553. MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Hochster, Big Cohen-Macaulay algebras in dimension three via Heitmann’s theorem, J. Algebra, 254 (2002), 395–408. MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Hochster, Homological conjectures, old and new, Ill. J. Math., 51 (2007), 151–169. MathSciNetzbMATHGoogle Scholar
  17. [17]
    M. Hochster and C. Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math., 113 (1995), 45–117. MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Koh, Degree \(p\) extensions of an unramified regular local ring of mixed characteristic \(p\), J. Algebra, 99 (1986), 310–323. MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    D. Lazard, Autour de la platitude, Bull. Soc. Math. Fr., 97 (1969), 81–128. MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986. zbMATHGoogle Scholar
  21. [21]
    T. Mihara, On Tate acyclicity and uniformity of Berkovich spectra and adic spectra, Isr. J. Math., 216 (2016), 61–105. MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Scholze, Perfectoid spaces, Publ. Math. IHÉS, 116 (2012), 245–313. MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Ohi, Direct summand conjecture and descent for flatness, Proc. Am. Math. Soc., 124 (1996), 1967–1968. MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J.-P. Olivier, Descente par morphismes purs, C. R. Math. Acad. Sci., 271 (1970), 821–823. MathSciNetzbMATHGoogle Scholar
  25. [25]
    C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. IHÉS, 42 (1973), 323–395. CrossRefzbMATHGoogle Scholar
  26. [26]
    N. Ranganathan, Splitting in module-finite extension rings and the vanishing conjecture for maps of Tor, Ph.D. Thesis, University Michigan, 2000. Google Scholar
  27. [27]
    M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Invent. Math., 13 (1971), 1–89. MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    K. Shimomoto, An application of the almost purity theorem to the homological conjectures, J. Pure Appl. Algebra, 220 (2014), 621–632. MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Williamson, Ramification theory for extensions of degree \(p\), Nagoya Math. J., 41 (1971), 149–168. MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Yekutieli, Flatnss and completion revisited, Algebr. Represent. Theory (2016),  10.1007/s10468-017-9735-7. Google Scholar

Copyright information

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut de Mathématiques de JussieuParisFrance

Personalised recommendations