Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance

Abstract

The role of gut microbiota on immune regulation and the development of autoimmune diseases such as rheumatoid arthritis (RA) is an emerging research topic. Multiple studies have demonstrated alterations on gut microbiota composition and/or function (referred to as dysbiosis) both in early and established RA patients. Still, research delineating the molecular mechanisms by which gut microorganisms induce the loss of immune tolerance or contribute to disease progression is scarce. Available data indicate that gut microbiota alterations are involved in RA autoimmune response by several mechanisms including the post-translational modification of host proteins, molecular mimicry between bacterial and host epitopes, activation of immune system and polarization toward inflammatory phenotypes, as well as induction of intestinal permeability. Therefore, in this review we analyze recent clinical and molecular evidence linking gut microbiota with the etiopathogenesis of RA. The potential of the gut microbiota as a diagnostic or severity biomarker is discussed, as well as the opportunity areas for the development of complementary therapeutic strategies based on the modulation of gut microbiota in the rheumatic patient.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. 1.

    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dougados M, Soubrier M, Antunez A, Balint P, Balsa A, Buch MH, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2014;73:62–8.

    PubMed  Google Scholar 

  3. 3.

    Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis. J Autoimmun. 2020;110:102400.

    CAS  PubMed  Google Scholar 

  4. 4.

    Okada Y, Eyre S, Suzuki A, Kochi Y, Yamamoto K. Genetics of rheumatoid arthritis: 2018 status. Ann Rheum Dis. 2019;78:446–53.

    CAS  PubMed  Google Scholar 

  5. 5.

    Holers VM, Demoruelle MK, Kuhn KA, et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat Rev Rheumatol. 2018;14:542–57.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Benedek TG. The history of bacteriologic concepts of rheumatic fever and rheumatoid arthritis. Semin Arthritis Rheum. 2006;36:109–23.

    PubMed  Google Scholar 

  7. 7.

    Sakkas LI, Daoussis D, Liossis S-N, Bogdanos DP. The infectious basis of ACPA-positive rheumatoid arthritis. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01853/full.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Balandraud N, Roudier J. Epstein-Barr virus and rheumatoid arthritis. Joint Bone Spine. 2018;85:165–70.

    CAS  PubMed  Google Scholar 

  9. 9.

    Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013. https://doi.org/10.7554/eLife.01202.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 2016;68:2646–61.

    CAS  PubMed  Google Scholar 

  11. 11.

    Alpizar-Rodriguez D, Lesker TR, Gronow A, Gilbert B, Raemy E, Lamacchia C, et al. Prevotella copri in individuals at risk for rheumatoid arthritis. Ann Rheum Dis. 2019;78:590–3.

    CAS  PubMed  Google Scholar 

  12. 12.

    Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016. https://doi.org/10.1186/s13073-016-0299-7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905.

    CAS  PubMed  Google Scholar 

  14. 14.

    Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol. 2017;52:1185–93.

    CAS  PubMed  Google Scholar 

  15. 15.

    Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5:411–8.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.

    CAS  PubMed  Google Scholar 

  17. 17.

    Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.00282/full.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016. https://doi.org/10.1186/s13073-016-0307-y.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Li J, Jia H, MetaHIT Consortium, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41.

    CAS  PubMed  Google Scholar 

  21. 21.

    Tomkovich S, Jobin C. Microbiota and host immune responses: a love-hate relationship. Immunology. 2016;147:1–10.

    CAS  PubMed  Google Scholar 

  22. 22.

    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69.

    CAS  PubMed  Google Scholar 

  24. 24.

    Östman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36:2336–46.

    PubMed  Google Scholar 

  25. 25.

    Ishikawa H, Tanaka K, Maeda Y, et al. Effect of intestinal microbiota on the induction of regulatory CD25 CD4 T cells. Clin Exp Immunol. 2008;153:127–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5:e73.

    Google Scholar 

  28. 28.

    Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Shimada Y, Kinoshita M, Harada K, et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE. 2013;8:e80604.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Berndt BE, Zhang M, Owyang SY, et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol-Gastrointest Liver Physiol. 2012;303:G1384–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Picchianti-Diamanti A, Rosado MM, D’Amelio R. Infectious agents and inflammation: the role of microbiota in autoimmune arthritis. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2017.02696.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kalinkovich A, Gabdulina G, Livshits G. Autoimmunity, inflammation, and dysbiosis mutually govern the transition from the preclinical to the clinical stage of rheumatoid arthritis. Immunol Res. 2018;66:696–709.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ege MJ. The hygiene hypothesis in the age of the microbiome. Ann Am Thorac Soc. 2017;14:S348–53.

    PubMed  Google Scholar 

  35. 35.

    Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299:1259–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. 2018;18:105–20.

    CAS  PubMed  Google Scholar 

  37. 37.

    Savin Z, Kivity S, Yonath H, Yehuda S. Smoking and the intestinal microbiome. Arch Microbiol. 2018;200:677–84.

    CAS  PubMed  Google Scholar 

  38. 38.

    OToole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214–5.

    CAS  Google Scholar 

  39. 39.

    Kolde R, Franzosa EA, Rahnavard G, et al. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med. 2018. https://doi.org/10.1186/s13073-018-0515-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Molina-Torres G, Rodriguez-Arrastia M, Roman P, Sanchez-Labraca N, Cardona D. Stress and the gut microbiota-brain axis. Behav Pharmacol. 2019;30:187–200.

    PubMed  Google Scholar 

  41. 41.

    Ogrendik M. Antibiotics for the treatment of rheumatoid arthritis. Int J Gen Med. 2013;7:43–7.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Daïen CI, Sellam J. Obesity and inflammatory arthritis: impact on occurrence, disease characteristics and therapeutic response. RMD Open. 2015;1:e000012.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kishikawa T, Maeda Y, Nii T, et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79:103–11.

    CAS  PubMed  Google Scholar 

  44. 44.

    Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76:1614–22.

    CAS  PubMed  Google Scholar 

  45. 45.

    Chiang HI, Li JR, Liu CC, et al. An association of gut microbiota with different phenotypes in chinese patients with rheumatoid arthritis. J Clin Med. 2019;8:1770.

    CAS  PubMed Central  Google Scholar 

  46. 46.

    Liu X, Zou Q, Zeng B, Fang Y, Wei H. Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol. 2013;67:170–6.

    CAS  PubMed  Google Scholar 

  47. 47.

    Picchianti-Diamanti A, Panebianco C, Salemi S, et al. Analysis of gut microbiota in rheumatoid arthritis patients: disease-related dysbiosis and modifications induced by etanercept. Int J Mol Sci. 2018;19:2938.

    PubMed Central  Google Scholar 

  48. 48.

    Liu X, Zhang J, Zou Q, et al. Lactobacillus salivarius isolated from patients with rheumatoid arthritis suppresses collagen-induced arthritis and increases Treg frequency in mice. J Interferon Cytokine Res. 2016;36:706–12.

    CAS  PubMed  Google Scholar 

  49. 49.

    Liu X, Zeng B, Zhang J, et al. Role of the gut microbiome in modulating arthritis progression in mice. Sci Rep. 2016. https://doi.org/10.1038/srep30594.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif S-K, Asghari-Jafarabadi M, Zavvari S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 2014;30:430–5.

    CAS  PubMed  Google Scholar 

  51. 51.

    Zamani B, Golkar HR, Farshbaf S, et al. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Int J Rheum Dis. 2016;19:869–79.

    CAS  PubMed  Google Scholar 

  52. 52.

    de los Angeles Pineda M, Thompson SF, Summers K, de Leon F, Pope J, Reid G. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit. 2011;17:CR347–54.

    PubMed Central  Google Scholar 

  53. 53.

    Hatakka K, Martio J, Korpela M, et al. Effects of probiotic therapy on the activity and activation of mild rheumatoid arthritis—a pilot study. Scand J Rheumatol. 2003;32:211–5.

    CAS  PubMed  Google Scholar 

  54. 54.

    Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61:1600240.

    Google Scholar 

  55. 55.

    Kalinkovich A, Livshits G. A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies. Semin Arthritis Rheum. 2019;49:474–84.

    CAS  PubMed  Google Scholar 

  56. 56.

    Darrah E, Andrade F. Rheumatoid arthritis and citrullination. Curr Opin Rheumatol. 2018;30:72–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Volkov M, Schie KA, Woude D. Autoantibodies and B cells: The ABC of rheumatoid arthritis pathophysiology. Immunol Rev. 2020;294:148–63.

    CAS  PubMed  Google Scholar 

  58. 58.

    Farquharson D, Butcher JP, Culshaw S. Periodontitis, Porphyromonas, and the pathogenesis of rheumatoid arthritis. Mucosal Immunol. 2012;5:112–20.

    CAS  PubMed  Google Scholar 

  59. 59.

    Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: Implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Goulas T, Mizgalska D, Garcia-Ferrer I, et al. Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Sci Rep. 2015. https://doi.org/10.1038/srep11969.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Konig MF, Abusleme L, Reinholdt J, et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med. 2016;8:369ra176.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation. 2004;28:311–8.

    PubMed  Google Scholar 

  63. 63.

    du Teil Espina M, Gabarrini G, Harmsen HJM, Westra J, van Winkelhoff AJ, van Dijl JM. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol Rev. 2019;43:1–18.

    Google Scholar 

  64. 64.

    Jeong SH, Nam Y, Jung H, et al. Interrupting oral infection of Porphyromonas gingivalis with anti-FimA antibody attenuates bacterial dissemination to the arthritic joint and improves experimental arthritis. Exp Mol Med. 2018;50:e460.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Carrion J, Scisci E, Miles B, et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J Immunol. 2012;189:3178–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    El-Awady AR, Miles B, Scisci E, et al. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathog. 2015;11:e1004647.

    CAS  PubMed Central  Google Scholar 

  67. 67.

    Totaro M, Cattani P, Ria F, et al. Porphyromonas gingivalis and the pathogenesis of rheumatoid arthritis: analysis of various compartments including the synovial tissue. Arthritis Res Ther. 2013;15:R66.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Reichert S, Haffner M, Keyßer G, et al. Detection of oral bacterial DNA in synovial fluid. J Clin Periodontol. 2013;40:591–8.

    CAS  PubMed  Google Scholar 

  69. 69.

    Nakajima M, Arimatsu K, Kato T, et al. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS ONE. 2015;10:e0134234.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Flak MB, Colas RA, Muñoz-Atienza E, Curtis MA, Dalli J, Pitzalis C. Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight. 2019;4:e125191.

    PubMed Central  Google Scholar 

  71. 71.

    Bennike TB, Ellingsen T, Glerup H, et al. Proteome analysis of rheumatoid arthritis gut mucosa. J Proteome Res. 2017;16:346–54.

    CAS  PubMed  Google Scholar 

  72. 72.

    Kinslow JD, Blum LK, Deane KD, et al. Elevated IgA plasmablast levels in subjects at risk of developing rheumatoid arthritis. Arthritis Rheumatol. 2016;68:2372–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Clavel C, Nogueira L, Laurent L, et al. Induction of macrophage secretion of tumor necrosis factor α through Fcγ receptor IIa engagement by rheumatoid arthritis–specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 2008;58:678–88.

    CAS  PubMed  Google Scholar 

  74. 74.

    Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122:1791–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Juarez M, Bang H, Hammar F, et al. Identification of novel antiacetylated vimentin antibodies in patients with early inflammatory arthritis. Ann Rheum Dis. 2016;75:1099–107.

    CAS  PubMed  Google Scholar 

  76. 76.

    Christensen DG, Xie X, Basisty N, et al. Post-translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.01604.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Simon GM, Cheng J, Gordon JI. Quantitative assessment of the impact of the gut microbiota on lysine -acetylation of host proteins using gnotobiotic mice. Proc Natl Acad Sci. 2012;109:11133–8.

    CAS  PubMed  Google Scholar 

  78. 78.

    Kim GW, Gocevski G, Wu CJ, Yang XJ. Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int J Cell Biol. 2010;2010:1–14.

    Google Scholar 

  79. 79.

    Pianta A, Arvikar S, Strle K, et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69:964–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Marietta EV, Murray JA, Luckey DH, et al. Suppression of inflammatory arthritis by human gut-derived Prevotella histicola in humanized mice. Arthritis Rheumatol. 2016;68:2878–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Pianta A, Arvikar SL, Strle K, et al. Two rheumatoid arthritis–specific autoantigens correlate microbial immunity with autoimmune responses in joints. J Clin Invest. 2017;127:2946–56.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Rodríguez-Carrio J, Hähnlein JS, Ramwadhdoebe TH, et al. Brief report: altered innate lymphoid cell subsets in human lymph node biopsy specimens obtained during the at-risk and earliest phases of rheumatoid arthritis. Arthritis Rheumatol. 2017;69:70–6.

    PubMed  Google Scholar 

  83. 83.

    Fine RL, Manfredo Vieira S, Gilmore MS, Kriegel MA. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes. 2020;11:217–30.

    PubMed  Google Scholar 

  84. 84.

    Zhou L, Zhang M, Wang Y, et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. 2018;24:1926–40.

    PubMed  Google Scholar 

  85. 85.

    Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23:366–84.

    CAS  PubMed  Google Scholar 

  86. 86.

    Sun Y, Chen Q, Lin P, et al. Characteristics of gut microbiota in patients with rheumatoid arthritis in Shanghai, China. Front Cell Infect Microbiol. 2019. https://doi.org/10.3389/fcimb.2019.00369.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Jones RM, Mulle JG, Pacifici R. Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone. 2018;115:59–67.

    PubMed  Google Scholar 

  88. 88.

    Novince CM, Whittow CR, Aartun JD, et al. Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-06126-x.

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Saad R, Rizkallah MR, Aziz RK. Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog. 2012;4:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Pan H, Guo R, Ju Y, et al. A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis. Microbiome. 2019. https://doi.org/10.1186/s40168-019-0719-1.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Costa NT, Scavuzzi BM, Iriyoda TMV, et al. Metabolic syndrome and the decreased levels of uric acid by leflunomide favor redox imbalance in patients with rheumatoid arthritis. Clin Exp Med. 2018;18:363–72.

    CAS  PubMed  Google Scholar 

  92. 92.

    Philippou E, Nikiphorou E. Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmun Rev. 2018;17:1074–7.

    CAS  PubMed  Google Scholar 

  93. 93.

    Hu Y, Sparks JA, Malspeis S, et al. Long-term dietary quality and risk of developing rheumatoid arthritis in women. Ann Rheum Dis. 2017;76:1357–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Hu Y, Costenbader KH, Gao X, Hu FB, Karlson EW, Lu B. Mediterranean diet and incidence of rheumatoid arthritis in women: association between a mediterranean diet and risk of RA. Arthritis Care Res. 2015;67:597–606.

    Google Scholar 

  95. 95.

    Tedeschi SK, Costenbader KH. Is there a role for diet in the therapy of rheumatoid arthritis? Curr Rheumatol Rep. 2016. https://doi.org/10.1007/s11926-016-0575-y.

    Article  PubMed  Google Scholar 

  96. 96.

    Johansson K, Askling J, Alfredsson L, Di Giuseppe D, EIRA Study Group. Mediterranean diet and risk of rheumatoid arthritis: a population-based case-control study. Arthritis Res Ther. 2018. https://doi.org/10.1186/s13075-018-1680-2.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Maruotti N, d’Onofrio F, Cantatore FP. Metabolic syndrome and chronic arthritis: effects of anti-TNF-α therapy. Clin Exp Med. 2015;15:433–8.

    CAS  PubMed  Google Scholar 

  98. 98.

    Bertin S, Aoki-Nonaka Y, de Jong PR, et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4 + T cells. Nat Immunol. 2014;15:1055–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174:1325–48.

    CAS  PubMed  Google Scholar 

  100. 100.

    Illescas-Montes R, Melguizo-Rodríguez L, Ruiz C, Costela-Ruiz VJ. Vitamin D and autoimmune diseases. Life Sci. 2019;233:116744.

    CAS  PubMed  Google Scholar 

  101. 101.

    Neve A, Corrado A, Cantatore FP. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clin Exp Med. 2014;14:275–83.

    CAS  PubMed  Google Scholar 

  102. 102.

    Häger J, Bang H, Hagen M, et al. The role of dietary fiber in rheumatoid arthritis patients: a feasibility study. Nutrients. 2019;11:2392.

    PubMed Central  Google Scholar 

  103. 103.

    Antushevich H. Fecal microbiota transplantation in disease therapy. Clin Chim Acta. 2020;503:90–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and revision of the manuscript. ZRC performed data collection, elaborated figures and tables, and write the first draft of the manuscript. EVM, MLC and JFMV were involved on the interpretation of data and commented on all versions of the manuscript for producing the final draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zyanya Reyes-Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare that the content of the manuscript, tables and figures is original and has not been published or submitted for publication elsewhere. All authors accept the responsibility for releasing this material and agree in transferring to the Editorial Springer the respective publication rights.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reyes-Castillo, Z., Valdés-Miramontes, E., Llamas-Covarrubias, M. et al. Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 21, 1–13 (2021). https://doi.org/10.1007/s10238-020-00647-y

Download citation

Keywords

  • Rheumatoid arthritis
  • Autoimmunity
  • Microbiome
  • Gut dysbiosis
  • Probiotics
  • Fecal microbiota transplant