Skip to main content

Advertisement

Log in

NK and NKT-like cells in granulomatous and fibrotic lung diseases

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abtract

Background The pathogenetic and regulatory roles of natural killer (NK) and natural killer T-like cells in interstitial lung diseases (ILDs), fibrotic and granulomatous of unknown etiology are unclear. Objectives Here we investigated NK and NKT-like cells in peripheral blood (PB) and Bronchoalveolar lavage (BAL) from patients with ILDs. Method 190 patients (94 male mean age 61 ± 14.3 years) and 8 controls undergoing bronchoscopy for ILD diagnostic work-up were enrolled consecutively; 115 patients sarcoidosis, 24 chronic fibrotic hypersensitivity pneumonitis and 43 patients other ILDs [32 idiopathic pulmonary fibrosis (IPF) and 11 non-specific interstitial pneumonia (NSIP)]. PB and BAL were processed by flow cytometry using monoclonal antibodies to differentiate NK and NKT-like cells. Results NK% in BAL was significantly different among ILDs (p = 0.02). Lower NK% was observed in BAL from sarcoidosis than other ILDs (p < 0.05). Similar findings were observed for NKT-like, whereas no differences were found for PB NK%. Difference of NK% was observed between BAL and PB in all groups (p < 0.001). Sarcoidosis patients reported the best area under the curve for NKT-like (AUC = 0.678, p = 0.0015) and NK cells (AUC = 0.61, p = 0.001). In the IPF-NSIP subgroup, NK% cell was inversely correlated with FVC% (r = − 0.34, p = 0.03) and DLCO% (r = − 0.47, p = 0.0044). Conclusions NK and NKT-like were expressed differently in BAL from patients with different ILD and were significantly depleted in sarcoidosis respect to other ILDs. This suggests that these cells may play a protective role in the pathogenesis of sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LFT:

Lung function tests

BAL:

Bronchoalveolar lavage

NK:

Natural killer cells

NKT-like:

Natural killer T-like cells

IPF:

Idiopathic pulmonary fibrosis

NSIP:

Non-specific interstitial pneumonia

cHP:

Chronic fibrotic hypersensitivity pneumonitis

ILD:

Interstitial lung diseases

FVC:

Forced vital capacity

FEV1:

Forced expiratory volume in the first second

DLco:

Diffuse lung carbon monoxide

References

  1. O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat Rev Immunol. 2019;19(5):282–90. https://doi.org/10.1038/s41577-019-0139-2.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Peng H, Tian Z. Innate lymphoid cell memory. Cell Mol Immunol. 2019;16(5):423–9. https://doi.org/10.1038/s41423-019-0212-6.

    Article  CAS  PubMed  Google Scholar 

  3. Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L, Human NK. Cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16(5):430–41. https://doi.org/10.1038/s41423-019-0206-4.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang H-J, Wang X-X, Luo B-F, et al. Direct antiviral agents upregulate natural killer cell potential activity in chronic hepatitis C patients. Clin Exp Med. 2019;19(3):299–308. https://doi.org/10.1007/s10238-019-00564-9.

    Article  CAS  PubMed  Google Scholar 

  5. Parasa VR, Selvaraj A, Sikhamani R, Raja A. Interleukins 15 and 12 in combination expand the selective loss of natural killer T cells in HIV infection in vitro. Clin Exp Med. 2015;15(2):205–13. https://doi.org/10.1007/s10238-014-0278-5.

    Article  CAS  PubMed  Google Scholar 

  6. Shi TD, Zhang JM, Wang XF, et al. Effects of antiviral therapy with Telbivudine on peripheral iNKT cells in HBeAg(+) chronic hepatitis B patients. Clin Exp Med. 2012;12(2):105–13. https://doi.org/10.1007/s10238-011-0151-8.

    Article  CAS  PubMed  Google Scholar 

  7. Yu JC, Lin G, Field JJ, Linden J. Induction of antiinflammatory purinergic signaling in activated human iNKT cells. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.91954.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stankovic B, Bjørhovde HAK, Skarshaug R, et al. Immune cell composition in human non-small cell lung cancer. Front Immunol. 2018;9:3101. https://doi.org/10.3389/fimmu.2018.03101.

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson Ström J, Pourazar J, Linder R, et al. Cytotoxic lymphocytes in COPD airways: increased NK cells associated with disease, iNKT and NKT-like cells with current smoking. Respir Res. 2018;19(1):244. https://doi.org/10.1186/s12931-018-0940-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Novak J, Novakova L. Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells. Clin Exp Med. 2013;13(4):229–37. https://doi.org/10.1007/s10238-012-0199-0.

    Article  CAS  PubMed  Google Scholar 

  11. Lin Y-L, Lin S-C. Analysis of the CD161-expressing cell quantities and CD161 expression levels in peripheral blood natural killer and T cells of systemic lupus erythematosus patients. Clin Exp Med. 2017;17(1):101–9. https://doi.org/10.1007/s10238-015-0402-1.

    Article  CAS  PubMed  Google Scholar 

  12. Grégoire C, Chasson L, Luci C, et al. The trafficking of natural killer cells. Immunol Rev. 2007;220:169–82. https://doi.org/10.1111/j.1600-065X.2007.00563.x.

    Article  PubMed  Google Scholar 

  13. Wang J, Li F, Zheng M, Sun R, Wei H, Tian Z. Lung natural killer cells in mice: phenotype and response to respiratory infection. Immunology. 2012;137(1):37–47. https://doi.org/10.1111/j.1365-2567.2012.03607.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riemann D, Cwikowski M, Turzer S, et al. Blood immune cell biomarkers in lung cancer. Clin Exp Immunol. 2019;195(2):179–89. https://doi.org/10.1111/cei.13219.

    Article  CAS  PubMed  Google Scholar 

  15. Hodge G, Hodge S. Therapeutic targeting steroid resistant pro-inflammatory NK and NKT-like cells in chronic inflammatory lung disease. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20061511.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harpur CM, Stankovic S, Kanagarajah A, et al. Enrichment of cytomegalovirus-induced NKG2C + natural killer cells in the lung allograft. Transplantation. 2018. https://doi.org/10.1097/TP.0000000000002545.

    Article  Google Scholar 

  17. Calabrese DR, Lanier LL, Greenland JR. Natural killer cells in lung transplantation. Thorax. 2019;74(4):397–404. https://doi.org/10.1136/thoraxjnl-2018-212345.

    Article  PubMed  Google Scholar 

  18. Souza-Fonseca-Guimaraes P, Guimaraes F, Natânia De Souza-Araujo C, et al. Natural killer cell assessment in peripheral circulation and bronchoalveolar lavage fluid of patients with severe sepsis: a case control study. Int J Mol Sci. 2017;18(3):1–2. https://doi.org/10.3390/ijms18030616.

    Article  CAS  Google Scholar 

  19. Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol. 2013;6(6):1054–67. https://doi.org/10.1038/mi.2013.59.

    Article  CAS  PubMed  Google Scholar 

  20. Katchar K, Söderström K, Wahlstrom J, Eklund A, Grunewald J. Characterisation of natural killer cells and CD56 + T-cells in sarcoidosis patients. Eur Respir J. 2005;26(1):77–85. https://doi.org/10.1183/09031936.05.00030805.

    Article  CAS  PubMed  Google Scholar 

  21. Papanikolaou IC, Boki KA, Giamarellos-Bourboulis EJ, et al. Innate immunity alterations in idiopathic interstitial pneumonias and rheumatoid arthritis-associated interstitial lung diseases. Immunol Lett. 2015;163(2):179–86. https://doi.org/10.1016/j.imlet.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  22. Sokhatska O, Padrão E, Sousa-Pinto B, et al. NK and NKT cells in the diagnosis of diffuse lung diseases presenting with a lymphocytic alveolitis. BMC Pulm Med. 2019;19:1–2. https://doi.org/10.1186/s12890-019-0802-1.

    Article  Google Scholar 

  23. Travis WD, Costabel U, Hansell DM, et al. An official american thoracic society/European respiratory society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–48. https://doi.org/10.1164/rccm.201308-1483ST.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hunninghake GW, Costabel U, Ando M, et al. ATS/ERS/WASOG statement on sarcoidosis. American thoracic society/European respiratory society/World association of sarcoidosis and other granulomatous disorders. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 1999;16(2):149–73.

    CAS  Google Scholar 

  25. Morisset J, Johannson KA, Jones KD, et al. Identification of diagnostic criteria for chronic hypersensitivity pneumonitis: an international modified delphi survey. Am J Respir Crit Care Med. 2018;197(8):1036–44. https://doi.org/10.1164/rccm.201710-1986OC.

    Article  PubMed  Google Scholar 

  26. Culver BH, Graham BL, Coates AL, et al. Recommendations for a standardized pulmonary function report. An official American thoracic society technical statement. Am J Respir Crit Care Med. 2017;196(11):1463–72. https://doi.org/10.1164/rccm.201710-1981st.

    Article  PubMed  Google Scholar 

  27. Meyer KC, Raghu G, Baughman RP, et al. An official American thoracic society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185(9):1004–14. https://doi.org/10.1164/rccm.201202-0320ST.

    Article  PubMed  Google Scholar 

  28. Landi C, Bargagli E, Carleo A, et al. A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics. 2015;128:375–87. https://doi.org/10.1016/j.jprot.2015.08.012.

    Article  CAS  PubMed  Google Scholar 

  29. Bergantini L, Bianchi F, Cameli P, et al. Prognostic biomarkers of sarcoidosis: a comparative study of serum chitotriosidase, ACE, Lysozyme, and KL-6. Dis Mark. 2019;2019:8565423. https://doi.org/10.1155/2019/8565423.

    Article  CAS  Google Scholar 

  30. Bargagli E, Prasse A. Sarcoidosis: a review for the internist. Int Emerg Med. 2018;13(3):325–31. https://doi.org/10.1007/s11739-017-1778-6.

    Article  Google Scholar 

  31. Lepzien R, Rankin G, Pourazar J, et al. Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients. J Leukoc Biol. 2019;105(4):797–807. https://doi.org/10.1002/JLB.5A0718-280RR.

    Article  CAS  PubMed  Google Scholar 

  32. Agostini C, Trentin L, Zambello R, et al. Phenotypical and functional analysis of natural killer cells in sarcoidosis. Clin Immunol Immunopathol. 1985;37(2):262–75.

    Article  CAS  PubMed  Google Scholar 

  33. Rijavec M, Volarevic S, Osolnik K, Kosnik M, Korosec P. Natural killer T cells in pulmonary disorders. Respir Med. 2011;105(Suppl 1):S20–5. https://doi.org/10.1016/S0954-6111(11)70006-3.

    Article  PubMed  Google Scholar 

  34. Korosec P, Rijavec M, Silar M, Kern I, Kosnik M, Osolnik K. Deficiency of pulmonary Valpha24 Vbeta11 natural killer T cells in corticosteroid-naïve sarcoidosis patients. Respir Med. 2010;104(4):571–7. https://doi.org/10.1016/j.rmed.2009.11.008.

    Article  PubMed  Google Scholar 

  35. Temprano J, Becker BA, Hutcheson PS, Knutsen AP, Dixit A, Slavin RG. Hypersensitivity pneumonitis secondary to residential exposure to Aureobasidium pullulans in 2 siblings. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol. 2007;99(6):562–6. https://doi.org/10.1016/S1081-1206(10)60387-0.

    Article  Google Scholar 

  36. Nogueira R, Melo N, e Bastos HN, et al. Hypersensitivity pneumonitis: antigen diversity and disease implications. Pulmonology. 2019;25(2):97–108. https://doi.org/10.1016/j.pulmoe.2018.07.003.

    Article  CAS  PubMed  Google Scholar 

  37. Boyton R. The role of natural killer T cells in lung inflammation. J Pathol. 2008;214(2):276–82. https://doi.org/10.1002/path.2290.

    Article  CAS  PubMed  Google Scholar 

  38. Papakosta D, Manika K, Gounari E, et al. Bronchoalveolar lavage fluid and blood natural killer and natural killer T-like cells in cryptogenic organizing pneumonia. Respirol Carlton Vic. 2014;19(5):748–54. https://doi.org/10.1111/resp.12305.

    Article  Google Scholar 

  39. Galati D, De Martino M, Trotta A, et al. Peripheral depletion of NK cells and imbalance of the Treg/Th17 axis in idiopathic pulmonary fibrosis patients. Cytokine. 2014;66(2):119–26. https://doi.org/10.1016/j.cyto.2013.12.003.

    Article  CAS  PubMed  Google Scholar 

  40. Goh NS, Hoyles RK, Denton CP, et al. Short-term pulmonary function trends are predictive of mortality in interstitial lung disease associated with systemic sclerosis. Arthritis Rheumatol. 2017;69(8):1670–8. https://doi.org/10.1002/art.40130.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was conducted at Siena University without funding sponsors.

Author information

Authors and Affiliations

Authors

Contributions

LB conducted the study. LB and PC helped to define the study objectives and to coordinate the study. LB, PC and Md performed the statistical analysis and interpreted the results, CL, RMR and MP collected the data, MS and CV performed experiment, LB, EB and PS wrote the first draft of the manuscript. All authors critically revised the manuscript and approved its final version.

Corresponding author

Correspondence to L Bergantini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Local Ethics Committee C.E. A. V. S. E. (Code Number 180712) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergantini, L., Cameli, P., d’Alessandro, M. et al. NK and NKT-like cells in granulomatous and fibrotic lung diseases. Clin Exp Med 19, 487–494 (2019). https://doi.org/10.1007/s10238-019-00578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00578-3

Keywords

Navigation