Skip to main content

Advertisement

Log in

Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Overview the progress of liquid biopsy using circulating tumor cells (CTCs) and circulating cell-free tumor DNA (cfDNA) to detect and monitor breast cancer. Based on numerous research efforts, the potential value of CTCs and cfDNA in the clinical aspects of cancer has become clear. With the development of next-generation sequencing analysis and newly developed technologies, many technical issues have been resolved, making liquid biopsy widely used in clinical practice. They can be powerful tools for dynamic monitoring of tumor progression and therapeutic efficacy. In the field of breast cancer, liquid biopsy is a research hot spot in recent years, playing a key role in monitoring breast cancer metastasis, predicting disease recurrence and assessing clinical drug resistance. Liquid biopsy has the advantages of noninvasive, high sensitivity, high specificity and real-time dynamic monitoring. Still application is far from reality, but the research and application prospects of CTCs and cfDNA in breast cancer are still worth exploring and discovering. This article reviews the main techniques and applications of CTCs and cfDNA in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  2. Kim C, Paik S. Gene-expression-based prognostic assays for breast cancer. Nat Rev Clin Oncol. 2010;7:340–7.

    Article  CAS  PubMed  Google Scholar 

  3. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol. 2009;6:327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31:172–9.

    Article  CAS  PubMed  Google Scholar 

  5. Bonnomet A, Syne L, Brysse A, Feyereisen E, Thompson EW, Noel A, et al. A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. 2012;31:3741–53.

    Article  CAS  PubMed  Google Scholar 

  6. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bednarz-Knoll N, Alix-Panabieres C, Pantel K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev. 2012;31:673–87.

    Article  CAS  PubMed  Google Scholar 

  8. Markiewicz A, Nagel A, Szade J, Majewska H, Skokowski J, Seroczynska B, et al. Aggressive phenotype of cells disseminated via hematogenous and lymphatic route in breast cancer patients. Transl Oncol. 2018;11:722–31.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boulding T, McCuaig RD, Tan A, Hardy K, Wu F, Dunn J, et al. LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci Rep. 2018;8:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou P, Li L, Chen F, Chen Y, Liu H, Li J, et al. PTBP3-mediated regulation of ZEB1 mRNA stability promotes epithelial-mesenchymal transition in breast cancer. Can Res. 2018;78:387–98.

    Article  CAS  Google Scholar 

  11. L. N. CTC clusters more likely to cause metastasis. Cancer Discov. 2014;4:1246–7.

    Google Scholar 

  12. Giuliano M, Shaikh A, Lo HC, Arpino G, De Placido S, Zhang XH, et al. Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Can Res. 2018;78:845–52.

    Article  CAS  Google Scholar 

  13. King MR, Phillips KG, Mitrugno A, Lee TR, de Guillebon AM, Chandrasekaran S, et al. A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol Cell Physiol. 2015;308:792–802.

    Article  CAS  Google Scholar 

  14. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.

    Article  PubMed  Google Scholar 

  15. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res. 2007;13:920–8.

    Article  CAS  PubMed  Google Scholar 

  16. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  CAS  PubMed  Google Scholar 

  17. Janni WJ, Rack B, Terstappen LW, Pierga JY, Taran FA, Fehm T, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res. 2016;22:2583–93.

    Article  CAS  PubMed  Google Scholar 

  18. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ksiazkiewicz M, Markiewicz A, Zaczek AJ. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology. 2012;79:195–208.

    Article  PubMed  Google Scholar 

  20. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014;9:694–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang Q, Wang FB, Yuan CH, He Z, Rao L, Cai B, et al. Gelatin nanoparticle-coated silicon beads for density-selective capture and release of heterogeneous circulating tumor cells with high purity. Theranostics. 2018;8:1624–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun N, Wang J, Ji L, Hong S, Dong J, Guo Y, et al. A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number CTCs. Small. 2015;11:5444–51.

    Article  CAS  PubMed  Google Scholar 

  23. Sun N, Li X, Wang Z, Zhang R, Wang J, Wang K, et al. A multiscale TiO2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl Mater Interfaces. 2016;8:12638–43.

    Article  CAS  PubMed  Google Scholar 

  24. Kwak B, Lee J, Lee D, Lee K, Kwon O, Kang S, et al. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system. Biosens Bioelectron. 2017;88:153–8.

    Article  CAS  PubMed  Google Scholar 

  25. Ates HC, Ozgur E, Kulah H. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture. Biointerphases. 2018;13:021001.

    Article  CAS  PubMed  Google Scholar 

  26. Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H, et al. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev. 2018;125:78–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Myung JH, Eblan MJ, Caster JM, Park SJ, Poellmann MJ, Wang K, et al. Multivalent binding and biomimetic cell rolling improves the sensitivity and specificity of circulating tumor cell capture. Clin Cancer Res. 2018;24:2539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, et al. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv. 2018;36:1063–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen K, Dopico P, Varillas JI, Zhang J, George TJ, Fan ZH. Integration of lateral filter arrays with immunoaffinity for circulating tumor cell isolation. Angew Chem Int Ed. 2019;58:7606–10.

    Article  CAS  Google Scholar 

  30. Kim TH, Wang Y, Oliver CR, Thamm DH, Cooling L, Paoletti C, et al. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells. Nat Commun. 2019;10:1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varillas JI, Zhang J, Chen K, Barnes II, Liu C, George TJ, et al. Microfluidic isolation of circulating tumor cells and cancer stem-like cells from patients with pancreatic ductal adenocarcinoma. Theranostics. 2019;9:1417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Au SH, Edd J, Stoddard AE, Wong KHK, Fachin F, Maheswaran S, et al. Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci Rep. 2017;7:2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang G, Benasutti H, Jones JF, Shi G, Benchimol M, Pingle S, et al. Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Colloids Surf B. 2018;161:200–9.

    Article  CAS  Google Scholar 

  34. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12:685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi JW, Kim JK, Yang YJ, Kim P, Yoon KH, Yun SH. Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Can Res. 2015;75:4474–82.

    Article  CAS  Google Scholar 

  36. Wang C, Mu Z, Chervoneva I, Austin L, Ye Z, Rossi G, et al. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat. 2017;161:83–94.

    Article  PubMed  Google Scholar 

  37. Mu Z, Wang C, Ye Z, Austin L, Civan J, Hyslop T, et al. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res Treat. 2015;154:563–71.

    Article  CAS  PubMed  Google Scholar 

  38. Jansson S, Bendahl PO, Larsson AM, Aaltonen KE, Ryden L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer. 2016;16:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176:98-112.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–8.

    Article  CAS  PubMed  Google Scholar 

  41. Jakabova A, Bielcikova Z, Pospisilova E, Matkowski R, Szynglarewicz B, Staszek-Szewczyk U, et al. Molecular characterization and heterogeneity of circulating tumor cells in breast cancer. Breast Cancer Treat. 2017;166:695–700.

    Article  CAS  Google Scholar 

  42. Sun N, Li X, Wang Z, Li Y, Pei R. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Biosens Bioelectron. 2018;102:157–63.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi M, Kim SH, Nakamura H, Kaneda S, Fujii T. Cancer cell analyses at the single cell-level using electroactive microwell array device. PLoS ONE. 2015;10:e0139980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen NV, Jen CP. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel. Biosens Bioelectron. 2018;121:10–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev. 2009;35:463–74.

    Article  CAS  PubMed  Google Scholar 

  46. Olsson E, Winter C, George A, Chen Y, Howlin J, Tang MH, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med. 2015;7:1034–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr Biol. 2014;6:388–98.

    Article  CAS  Google Scholar 

  48. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med. 2013;5:180ra48.

    Article  CAS  PubMed  Google Scholar 

  49. Maheswaran S, Haber DA. Ex vivo culture of CTCs: an emerging resource to guide cancer therapy. Can Res. 2015;75:2411–5.

    Article  CAS  Google Scholar 

  50. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159:176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khoo BL, Grenci G, Jing T, Lim YB, Lee SC, Thiery JP, et al. Liquid biopsy and therapeutic response: circulating tumor cell cultures for evaluation of anticancer treatment. Sci Adv. 2016;2:e1600274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu WJ, Wang ZH, Wang Z, Deng YL, Shi QH. Fast isolation and ex vivo culture of circulating tumor cells from the peripheral blood of lung cancer patients. Hereditas. 2017;39:66–74.

    PubMed  Google Scholar 

  53. Sobral-Filho RG, DeVorkin L, Macpherson S, Jirasek A, Lum JJ, Brolo AG. Ex vivo detection of circulating tumor cells from whole blood by direct nanoparticle visualization. ACS Nano. 2018;12:1902–9.

    Article  CAS  PubMed  Google Scholar 

  54. Rothe F, Silva MJ, Venet D, Campbell C, Bradburry I, Rouas G et al. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial. Clin Cancer Res. 2019.

  55. Ignatiadis M, Litiere S, Rothe F, Riethdorf S, Proudhon C, Fehm T, et al. Trastuzumab versus observation for HER2 nonamplified early breast cancer with circulating tumor cells (EORTC 90091-10093, BIG 1-12, Treat CTC): a randomized phase II trial. Ann Oncol. 2018;29:1777–83.

    Article  CAS  PubMed  Google Scholar 

  56. Jaeger BAS, Neugebauer J, Andergassen U, Melcher C, Schochter F, Mouarrawy D, et al. The HER2 phenotype of circulating tumor cells in HER2-positive early breast cancer: a translational research project of a prospective randomized phase III trial. PLoS ONE. 2017;12:e0173593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schramm A, Schochter F, Friedl TWP, de Gregorio N, Andergassen U, Alunni-Fabbroni M, et al. Prevalence of circulating tumor cells after adjuvant chemotherapy with or without anthracyclines in patients with HER2-negative, hormone receptor-positive early breast cancer. Clin Breast Cancer. 2017;17:279–85.

    Article  CAS  PubMed  Google Scholar 

  58. Wallwiener M, Hartkopf AD, Riethdorf S, Nees J, Sprick MR, Schonfisch B, et al. The impact of HER2 phenotype of circulating tumor cells in metastatic breast cancer: a retrospective study in 107 patients. BMC Cancer. 2015;15:403.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jakabova A, Bielcikova Z, Pospisilova E, Matkowski R, Szynglarewicz B, Staszek-Szewczyk U, et al. Molecular characterization and heterogeneity of circulating tumor cells in breast cancer. Breast Cancer Res Treat. 2017;166:695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Can Res. 2001;61:1659–65.

    CAS  Google Scholar 

  61. Canzoniero JV, Park BH. Use of cell free DNA in breast oncology. Biochem Biophys Acta. 2016;1865:266–74.

    CAS  PubMed  Google Scholar 

  62. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14:18925–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kirsch C, Weickmann S, Schmidt B, Fleischhacker M. An improved method for the isolation of free-circulating plasma DNA and cell-free DNA from other body fluids. Ann N Y Acad Sci. 2008;1137:135–9.

    Article  CAS  PubMed  Google Scholar 

  64. Atamaniuk J, Vidotto C, Tschan H, Bachl N, Stuhlmeier KM, Muller MM. Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem. 2004;50:1668–70.

    Article  CAS  PubMed  Google Scholar 

  65. Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med (Auckland, NZ). 2012;42:565–86.

    Article  Google Scholar 

  66. Esposito A, Criscitiello C, Locatelli M, Milano M, Curigliano G. Liquid biopsies for solid tumors: understanding tumor heterogeneity and real time monitoring of early resistance to targeted therapies. Pharmacol Ther. 2016;157:120–4.

    Article  CAS  PubMed  Google Scholar 

  67. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22:5772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Korfhage C, Fricke E, Meier A. Parallel WGA and WTA for comparative genome and transcriptome NGS analysis using tiny cell numbers. Curr Protoc Mol Biol. 2015;111:7.19.1-8.

    Google Scholar 

  69. Iqbal S, Vishnubhatla S, Raina V, Sharma S, Gogia A, Deo SS, et al. Circulating cell-free DNA and its integrity as a prognostic marker for breast cancer. Springer Plus. 2015;4:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol. 2003;21:3902–8.

    Article  CAS  PubMed  Google Scholar 

  71. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lou QGJ. Research progresses of circulating tumor DNA. Chin J Cancer Biother 2016.

  73. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. 2016;18:26107–19.

    Google Scholar 

  74. Bulfoni M, Gerratana L, Del Ben F, Marzinotto S, Sorrentino M, Turetta M, et al. In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res. 2016;18:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005;23:1420–30.

    Article  PubMed  Google Scholar 

  76. Lang JE, Ring A, Porras T, Kaur P, Forte VA, Mineyev N, et al. RNA-Seq of circulating tumor cells in stage II-III breast cancer. Ann Surg Oncol. 2018;25:2261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer (Amsterdam, Netherlands). 2015;90:509–15.

    Article  Google Scholar 

  78. Halvaei S, Daryani S, Eslami SZ, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, et al. Exosomes in cancer liquid biopsy: a focus on breast cancer. Mol Ther Nucleic Acids. 2018;10:131–41.

    Article  CAS  PubMed  Google Scholar 

  79. Akagi T, Kato K, Kobayashi M, Kosaka N, Ochiya T, Ichiki T. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PLoS ONE. 2015;10:e0123603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chahar HS, Bao X, Casola A. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses. 2015;7:3204–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang X, Zhong W, Bu J, Li Y, Li R, Nie R, et al. Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol Carcinog. 2019;58:674–85.

    Article  CAS  PubMed  Google Scholar 

  82. Son D, Kim Y, Lim S, Kang HG, Kim DH, Park JW, et al. miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer. Cancer Lett. 2019;454:224–33.

    Article  CAS  PubMed  Google Scholar 

  83. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6:479–91.

    Article  CAS  PubMed  Google Scholar 

  84. Tuomela J, Sandholm J, Kaakinen M, Patel A, Kauppila JH, Ilvesaro J, et al. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res Treat. 2013;142:477–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huebner H, Fasching PA, Gumbrecht W, Jud S, Rauh C, Matzas M, et al. Filtration based assessment of CTCs and Cell Search(R) based assessment are both powerful predictors of prognosis for metastatic breast cancer patients. BMC Cancer. 2018;18:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15:406–14.

    Article  PubMed  Google Scholar 

  87. Bidard FC, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J Natl Cancer Inst. 2018;110:560–7.

    Article  PubMed  Google Scholar 

  88. American Joint Committee on Cancer (2018) Updated breast chapter for 8th edition. Accessed 25 January 2018. https://cancerstaging.org/references-tools/deskreferences/Pages/Breast-Cancer-Staging.aspx.

  89. Dawson SJ, Rosenfeld N, Caldas C. Circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;369:93–4.

    Article  PubMed  Google Scholar 

  90. Rossi G, Mu Z, Rademaker AW, Austin LK, Strickland KS, Costa RLB, et al. Cell-free DNA and circulating tumor cells: comprehensive liquid biopsy analysis in advanced breast cancer. Clin Cancer Res. 2018;24:560–8.

    Article  CAS  PubMed  Google Scholar 

  91. Babayan A, Pantel K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome Med. 2018;10:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paoletti C, Cani AK, Larios JM, Hovelson DH, Aung K, Darga EP, et al. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Can Res. 2018;78:1110–22.

    Article  CAS  Google Scholar 

  93. Aktas B, Muller V, Tewes M, Zeitz J, Kasimir-Bauer S, Loehberg CR, et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol Oncol. 2011;122:356–60.

    Article  CAS  PubMed  Google Scholar 

  94. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7:302ra133.

    Article  PubMed  Google Scholar 

  95. Sundaresan TK, Haber DA. Does molecular monitoring matter in early-stage breast cancer? Sci Transl Med. 2015;7:302fs35.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program No. 2012CB933303), the National Natural Science Foundation of China (Program Nos. 81472751, 61271162, 61401442 and 61571428), the Shanghai Pujiang Program (No. 15PJ1409800), The Jiangsu Provincial Funds for Six Categories of Top Talents (Program No.WS-066) and The Research project of Jiangsu provincial health and Family Planning Commission (Program No. H201526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Cong.

Ethics declarations

Conflict of interest

We have declared that no competing interests exist. The authors alone are responsible for the content and writing of the paper.

Ethical approval

The study complies with the Declaration of Helsinki and was approved by the Ethics Committee of Affiliated Hospital of Nantong University, and all patients gave written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ju, S., Wang, X. et al. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med 19, 271–279 (2019). https://doi.org/10.1007/s10238-019-00563-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00563-w

Keywords

Navigation