Skip to main content

Advertisement

Log in

Circulating soluble levels of MIF in women with breast cancer in the molecular subtypes: relationship with Th17 cytokine profile

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a health problem worldwide; there is evidence that inflammatory cytokines are increased in BC. Macrophage migration inhibitory factor (MIF) has multiple effects on immune cells, inflammation and cancer. Besides, in previous studies, contradictory and uncertain results have been presented on the implication of Th17 cytokine profile in BC. The aim of this study was to evaluate the plasma levels of MIF and the Th17 cytokine profile in BC and their association with their molecular subtypes and clinical stage. A total of 150 women with BC of Ella Binational Breast Cancer Study and 60 healthy women (HW) were evaluated in cross-sectional study. The molecular subtypes were identified by immunohistochemistry. The plasma levels of MIF were quantified by ELISA and Th17 cytokine profile by multiplex system. MIF and IL-17 were significantly increased in BC versus HW (11.1 vs. 5.2 ng/mL and 14.8 pg/mL vs. 2.5 pg/mL p < 0.001, respectively). Our analysis showed that both MIF and IL-17A were associated with increased risk of breast cancer (OR 3.85 CI 95% 1.98–7.50 and OR 4.51 95% 1.83–11.15, respectively), higher in aggressive subtypes Luminal B, HER2 and TN. Likewise, we observed positive correlation between MIF and IL-17A (p < 0.001). In addition, IL-17E was lower in BC versus HW (p <0.001). Likewise, we observed a positive correlation between MIF and IL-17A (p < 0.001). In conclusion, both MIF and IL-17A were associated with high risk for breast cancer and aggressive molecular subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  Google Scholar 

  2. Karatas F, Erdem GU, Sahin S, et al. Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2017;32:237–44. https://doi.org/10.1016/j.breast.2016.05.013.

    Article  PubMed  Google Scholar 

  3. Eroles P, Bosch A, Alejandro Pérez-Fidalgo J, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698–707. https://doi.org/10.1016/j.ctrv.2011.11.005.

    Article  CAS  PubMed  Google Scholar 

  4. Lukong KE. Understanding breast cancer: the long and winding road. BBA Clin. 2017;7:64–77. https://doi.org/10.1016/j.bbacli.2017.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kawczyk-krupka A, Bugaj AM, Latos W, et al. ALA-mediated photodynamic effect on apoptosis induction, and secretion of macrophage migration inhibitory factor (MIF) and of monocyte chemotactic protein (MCP-1), by colon cancer cells in normoxia and in hypoxia-like conditions in vitro. Photodiagnosis Photodyn Ther. 2014;S1572–1000:1–25. https://doi.org/10.1016/j.pdpdt.2014.12.013.

    Article  CAS  Google Scholar 

  6. Ballesio L, Gigli S, Di Pastena F, et al. Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: correlation with tumor biological subtypes and pathological response after therapy. Tumor Biol. 2017;39(3):1010428317694540.

    Article  Google Scholar 

  7. Dushyanthen S, Beavis PA, Savas P, et al. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med. 2015;13(1):1–13. https://doi.org/10.1186/s12916-015-0431-3.

    Article  CAS  Google Scholar 

  8. Pruneri G, Vingiani A, Denkert C. Tumor infiltrating lymphocytes in early breast cancer. Breast. 2018;37:207–14. https://doi.org/10.1016/j.breast.2017.03.010.

    Article  PubMed  Google Scholar 

  9. Matsumoto H, Koo S, Dent R, Tan PH, Iqbal J. Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol. 2015;68(7):506–10. https://doi.org/10.1136/jclinpath-2015-202944.

    Article  CAS  PubMed  Google Scholar 

  10. Agahozo MC, Hammerl D, Debets R, Kok M, van Deurzen CHM. Tumor-infiltrating lymphocytes and ductal carcinoma in situ of the breast: friends or foes? Mod Pathol. 2018;31(7):1012–25.

    Article  PubMed  Google Scholar 

  11. Thibaudin M, Chaix M, Boidot R, Vegran F, Derangere V, Limagne E, et al. Human ectonucleotidase-expressing CD25(high) Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology. 2016;5(1):e1055444.

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Wang B, Ye C, et al. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer Lett. 2008;261(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  13. Welte T, Zhang XHF. Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediators Inflamm. 2015;2015:1–6.

    Article  CAS  Google Scholar 

  14. Richard V, Kindt N, Saussez S. Macrophage migration inhibitory factor involvement in breast cancer (Review). Int J Oncol. 2015;47(5):1627–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3(10):791–800. http://www.nature.com/doifinder/10.1038/nri1200.

  16. Rendon BE, Willer SS, Zundel W, Mitchell RA. Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol. 2009;86(3):180–5. https://doi.org/10.1016/j.yexmp.2009.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR17 chemokine receptor/ligand family: molecular perspectives. Front Immunol. 2015;6:1–23.

    Article  CAS  Google Scholar 

  18. Alampour-Rajabi S, El Bounkari O, Rot A, et al. MIF interacts with CXCR18 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J. 2015;29(11):4497–511.

    Article  CAS  PubMed  Google Scholar 

  19. Stojanović I, Cvjetićanin T, Lazaroski S, Stošić-Grujičić S, Miljković D. Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology. 2009;126(1):74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guéry L, Hugues S. Th17 cell plasticity and functions in cancer immunity. Biomed Res Int. 2015;2015:314620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richard V, Kindt N, Saussez S. Macrophage migration inhibitory factor involvement in breast cancer. Int J Oncol. 2015;47:1627–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gnant M, Thomssen C, Harbeck N. St. Gallen/Vienna 2015: a brief summary of the consensus discussion. Breast care. 2015;10(2):124–30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lugrin J, Ding XC, Le Roy D, et al. Histone deacetylase inhibitors repress macrophage migration inhibitory factor (MIF) expression by targeting MIF gene transcription through a local chromatin deacetylation. Biochim Biophys Acta Mol Cell Res. 2009;1793(11):1749–58. https://doi.org/10.1016/j.bbamcr.2009.09.007.

    Article  CAS  Google Scholar 

  24. Richard V, Kindt N, Decaestecker C, et al. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer. Oncol Rep. 2014;32(2):523–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 2016;30:92–100. https://doi.org/10.1016/j.breast.2016.09.002.

    Article  PubMed  Google Scholar 

  26. Bando H, Matsumoto G, Bando M et al. Expression of macrophage migration inhibitory factor in human breast cancer: association with nodal spread. Jpn J Cancer Res. 2002;93(4):389–96. http://www.ncbi.nlm.nih.gov/pubmed/11985788.

  27. Nobre CCG, Araújo JMG, Fernandes TAA, et al. Macrophage Migration Inhibitory Factor (MIF): biological activities and relation with cancer. Pathol Oncol Res. 2017;23(2):235–44. https://doi.org/10.1007/s12253-016-0138-6.

    Article  CAS  PubMed  Google Scholar 

  28. Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2012;80(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  29. Verjans E, Noetzel E, Bektas N, et al. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer. 2009;9:1–18.

    Article  CAS  Google Scholar 

  30. Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019 (in Press).

  31. Fabre J, Giustinniani J, Garbar C, et al. The interleukin-17 family of cytokines in breast cancer. Int J Mol Sci. 2018;19(12):3880.

    Article  CAS  PubMed Central  Google Scholar 

  32. Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal. 2019;57:76–88.

    Article  CAS  PubMed  Google Scholar 

  33. Lang T, Lee J, Elgass K, et al. Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun. 2018;9(1):2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balogh N, Templeton J, Cross V. Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS ONE. 2018;13(6):e0197702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simpson D, Cross V. MIF: metastasis/MDSC-inducing factor? Oncoimmunology. 2013;2(3):e23337.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Umansky V. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. 2018;9:1–9.

    Article  CAS  Google Scholar 

  37. Song Y, Yang JM. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun. 2017;493(1):1–8. https://doi.org/10.1016/j.bbrc.2017.08.109.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang Z, Chen J, Du X, Cheng H, Wang X, Dong C. IL-25 blockade inhibits metastasis in breast cancer. Protein Cell. 2017;8(3):191–201.

    Article  CAS  PubMed  Google Scholar 

  39. Croce M, Rigo V, Ferrini S. IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res. 2015;2015:696578.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang L-N, Cui Y-X, Ruge F, Jiang WG. Interleukin 21 and its receptor play a role in proliferation, migration and invasion of breast cancer cells. Cancer Genom Proteom. 2015;12(5):211–21. http://cgp.iiarjournals.org/content/12/5/211.

  41. Ko H, Shen C, Murugan K, et al. Macrophage Migration Inhibitory Factor Acts as the potential target of a Newly synthesized Compound, 1-(9′-methyl-3′-carbazole)-3,4-dihydro-β-carboline. Sci Rep. 2019;9(1):2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the important contribution of Rogelio Troyo Sanroman for the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Del Toro-Arreola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted conforming to the declaration of Helsinki and the research was approved by the ethical investigation, committee from each hospital and Universidad de Guadalajara (CI-9708).

Informed consent

Informed consent was obtained from each participant before enrolling in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avalos-Navarro, G., Muñoz-Valle, J.F., Daneri-Navarro, A. et al. Circulating soluble levels of MIF in women with breast cancer in the molecular subtypes: relationship with Th17 cytokine profile. Clin Exp Med 19, 385–391 (2019). https://doi.org/10.1007/s10238-019-00559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00559-6

Keywords

Navigation