Skip to main content

Advertisement

Log in

Serum miR-122 levels correlate with diabetic retinopathy

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is the most severe ocular complication of diabetes and may lead to visual disability and blindness. Proliferative diabetic retinopathy (PDR) is characterized by ischemia-induced neovascularization with associated complications. An association was established between the presence of PDR, cardiovascular disease, and mortality among patients with type 1 diabetes mellitus and type 2 diabetes mellitus in epidemiological studies. However, the mechanism underlying increased cardiovascular risk in patients with PDR is still unknown. In recent years, a group of miRNAs has been linked to the pathology of diabetes mellitus. Besides, miRNAs in biofluids such as serum have been suggested as potential minimally invasive biomarkers of diabetes and vascular complications. This was a prospective study that recruited 40 human subjects: 10 healthy subjects, 10 with diabetes but without retinopathy (NDR), 10 with diabetic non-proliferative retinopathy (NPDR), and 10 with proliferative diabetic retinopathy (PDR). To examine whether serum miRNAs show altered levels at different stages of diabetic retinopathy, seven specific miRNA candidates (miR-126-3p, miR-130a-3p, miR-21-1, let-7f-5p, miR-122, miR-30c and miR-451a) were measured by qRT-PCR in RNA isolated from sera of all subjects. miR-122 levels increased in parallel with retinopathy severity: from healthy controls to NDR and from NDR to NPDR. However, when the disease progressed to PDR a marked decrease in miR-122 level was noted. This decrease was significant both compared to NPDR samples (p = 0.016) and to all non-PDR samples (p = 0.0002). Additionally, a positive trend was observed comparing miR-122 levels and the number of endothelial progenitor cells in the sera of all subjects. A significant increase in miR-122 was found in patients with diabetic retinopathy that may be related to its role in preventing angiogenesis and proliferation. The dramatic decline in patients with PDR may represent an inhibition or exhaustion of the anti-angiogenic anti-proliferative defense system. Further studies are needed to understand whether miRNA-122 has a role in the pathogenesis of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.

    Article  CAS  PubMed  Google Scholar 

  3. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  PubMed  Google Scholar 

  4. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984;102:520–6.

    Article  CAS  PubMed  Google Scholar 

  6. Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984;102:527–32.

    Article  CAS  PubMed  Google Scholar 

  7. Frank NR. Diabetic retinopathy. N Engl J Med. 2004;350:48–58.

    Article  CAS  PubMed  Google Scholar 

  8. Klein R, Klein BEK, Moss SE, Cruickshanks KJ. Association of ocular disease and mortality in a diabetic population. Arch Ophthalmol. 1999;117:1487–95.

    Article  CAS  PubMed  Google Scholar 

  9. Klein R, Klein BEK, Moss SE. The epidemiology of proliferative diabetic retinopathy. Diabetes Care. 1992;15:1875–91.

    Article  CAS  PubMed  Google Scholar 

  10. Tancredi M, Rosengren A, Svensson A-M, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373:1720–32.

    Article  CAS  PubMed  Google Scholar 

  11. Blum A, Pastukh N, Socea D, Jabaly H. Levels of adhesion molecules in peripheral blood correlate with stages of diabetic retinopathy and may serve as bio markers for microvascular complications. Cytokine. 2017. https://doi.org/10.1016/j.cyto.2017.10.014 [Epub ahead of print].

  12. Blum A, Socea D, Ben-Shushan RS, Keinan-Boker L, Naftali M, Segol G, Tamir S. A decrease in VEGF and inflammatory markers is associated with diabetic proliferative retinopathy. Eur Cytokine Netw. 2012;23(4):158–62.

    CAS  PubMed  Google Scholar 

  13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Valverde SL, Taft RJ, Mattick JS. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes. 2011;60(7):1825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9(9):513–21.

    Article  CAS  PubMed  Google Scholar 

  16. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2011;93(4):583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandey AK, Agarwal P, Kaur K, Datta M. MicroRNAs in diabetes: tiny players in big disease. Cellular Physiol Biochem. 2009;23(4–6):221–32.

    Article  CAS  Google Scholar 

  18. de Candia P, Spinetti G, Specchia C, et al. A unique plasma microRNA profile defines type 2 diabetes progression. PLoS ONE. 2017;12(12):e0188980. https://doi.org/10.1371/journal.pone.0188980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rawshani A, Rawshani A, Franzen S, et al. Mortality and cardiovasculuar disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376(15):1407–18.

    Article  PubMed  Google Scholar 

  20. Blum A, Pastukh N, Socea D, Hanin J. Colony forming unites-endothelial progenitor cells (CFU-EPCs): a surrogate marker for diabetic retinopathy and high cardiovascular mortality rate. Int J Pharma Res Rev. 2016;5(5):57–62.

    Google Scholar 

  21. Stegemann C, Pechlaner T, Willeit P, et al. Lipidpmics profiling and risk of cardiovascular disease in the prospective population-based bruneck study. Circulation. 2014;129:1821–31.

    Article  CAS  PubMed  Google Scholar 

  22. Willeit P, Kiechl S, Kronenberg F, et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein (a): prospective 15-year outcomes in the Bruneck Study. J Am Coll Cardiol. 2014;64:851–60.

    Article  PubMed  Google Scholar 

  23. Zampetaki A, Willeit P, Tilling L, et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012;60:290–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kiechl S, Wittmann J, Giacceari A, et al. Blockade of receptor activator of nuclear factor-k B (RNAKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19:358–63.

    Article  CAS  PubMed  Google Scholar 

  25. Willeit P, Willeit J, Brandstatter A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30:1649–56.

    Article  CAS  PubMed  Google Scholar 

  26. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower than average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ACOT-LLA): a multicenter randomized controlled trial. Lancet. 2003;361:1149–58.

    Article  CAS  PubMed  Google Scholar 

  27. Poulter NR, Wedel H, Dahlof B, et al. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA). Lancet. 2005;366:907–13.

    Article  CAS  PubMed  Google Scholar 

  28. Stanton A, Fitzgerald D, Hughes A, et al. An intensive phenotyping study to enable the future examination of genetic influences on hypertension-associated cardiovascular disease. J Hum Hypertens. 2001;15(Suppl 1):S13–8.

    Article  PubMed  Google Scholar 

  29. Willwit P, Skroblin P, Moschen AR, et al. Circulating microRNA-122 is associated with the risk of new onset metabolic syndrome and type 2 diabetes. Diabetes. 2017;66(2):347–57.

    Article  CAS  Google Scholar 

  30. Cortez-Dias N, Costa MC, Carrilho-Ferreira P, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 2016;80:2183–91.

    Article  CAS  PubMed  Google Scholar 

  31. Gao W, He HW, Wang ZM, et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis. 2012;11:55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blum A, Yehuda H, Geron N, Meerson A. Elevated levels of miR-122 in serum may contribute to improved endothelial function and lower oncologic risk following bariatric surgery. IMAJ. 2017;19(10):620–4.

    PubMed  Google Scholar 

  33. Burchard J, Zhang C, Liu AM, et al. microRNA-122 as a regulator of mitochindrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6:402. https://doi.org/10.1038/msb.2010.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Li H, Chen S, et al. Knockdown of MicroRNA-122 protects H9c2 cardiomyocytes from hypoxia induced apoptosis and promotes autophagy. Med Sci Monit. 2017;23:4284–90.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dhahri W, Dussault S, Haddad P, et al. Reduced expression of let-7f activates TGF-β/ALK5 pathway and leads to impaired ischaemia-induced neovascularization after cigarette smoke exposure. J Cell Mol Med. 2017;21(9):2211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Blum.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Additional information

The first 2 authors share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukh, N., Meerson, A., Kalish, D. et al. Serum miR-122 levels correlate with diabetic retinopathy. Clin Exp Med 19, 255–260 (2019). https://doi.org/10.1007/s10238-019-00546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00546-x

Keywords

Navigation