Skip to main content

Advertisement

Log in

mTOR and ERK regulate VKORC1 expression in both hepatoma cells and hepatocytes which influence blood coagulation

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Deficiency of γ-glutamyl carboxylation of coagulation factors, as evidenced by the elevated level of Des-γ-carboxyl prothrombin (DCP), is a common feature in hepatocellular carcinoma patients. Additionally, treatment of cancer patients with mTOR inhibitors significantly increases hemorrhagic events. However, the underlying mechanisms remain unknown. In the present study, Vitamin K epoxide reductase complex subunit 1 (VKORC1) was found to be significantly down-regulated in clinical hepatoma tissues and most tested hepatoma cell lines. In vitro investigations showed that VKORC1 expression was promoted by p-mTOR at the translational level and repressed by p-ERK at the transcriptional level. By exploring Hras12V transgenic mice, a hepatic tumor model, VKROC1 was significantly down-regulated in hepatic tumors and showed prolonged activated partial prothrombin time (APTT). In vivo investigations further showed that VKORC1 expression was promoted by p-mTOR and repressed by p-ERK in both hepatoma and hepatocytes. Consistently, APTT and prothrombin time were significantly prolonged under the mTOR inhibitor treatment and significantly shortened under the ERK inhibitor treatment. Conclusively, these findings indicate that mTOR and ERK play crucial roles in controlling VKORC1 expression in both hepatoma and hepatocytes, which provides a valuable molecular basis for preventing hemorrhage in clinical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APTT:

Activated partial prothrombin time

DCP:

Des-γ-carboxyl prothrombin

ERK:

Extracellular signal-regulated kinase

GGCX:

Gamma-glutamyl carboxylase

HCC:

Hepatocellular carcinoma

mTOR:

Mammalian target of rapamycin

NGS:

Next-generation sequencing

P:

Hepatic tumor-adjacent normal liver tissues

PT:

Prothrombin time

Ras-Tg mice:

Hras12V transgenic mice

T:

Hepatic tumor tissues

TF:

Tissue factor

VK:

Vitamin K

VKDB:

Vitamin K deficiency-related bleeding

VKORC1:

Vitamin K epoxide reductase complex subunit 1

Wt:

Wild-type mice or normal liver tissues of wild-type mice

References

  1. Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7(8):448–58. https://doi.org/10.1038/nrgastro.2010.100.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Okonkwo UC, Nwosu MN, Ukah C, Okpala OC, Ahaneku JI. The clinical and pathological features of hepatocellular carcinoma in Nnewi, Nigeria. Niger J Med. 2011;20(3):366–71.

    CAS  PubMed  Google Scholar 

  3. Jaka H, Mshana SE, Rambau PF, Masalu N, Chalya PL, Kalluvya SE. Hepatocellular carcinoma: clinicopathological profile and challenges of management in a resource-limited setting. World J Surg Oncol. 2014;12:246. https://doi.org/10.1186/1477-7819-12-246.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Friedman LS. The risk of surgery in patients with liver disease. Hepatology. 1999;29(6):1617–23. https://doi.org/10.1002/hep.510290639.

    Article  CAS  Google Scholar 

  5. Mucino-Bermejo J, Carrillo-Esper R, Uribe M, Mendez-Sanchez N. Coagulation abnormalities in the cirrhotic patient. Ann Hepatol. 2013;12(5):713–24.

    Article  Google Scholar 

  6. Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56(2):769–75. https://doi.org/10.1002/hep.25670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferron M, Lacombe J, Germain A, Oury F, Karsenty G. GGCX and VKORC1 inhibit osteocalcin endocrine functions. J Cell Biol. 2015;208(6):761–76. https://doi.org/10.1083/jcb.201409111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oldenburg J, Marinova M, Muller-Reible C, Watzka M. The vitamin K cycle. Vitam Horm. 2008;78:35–62. https://doi.org/10.1016/S0083-6729(07)00003-9.

    Article  CAS  PubMed  Google Scholar 

  9. Spohn G, Kleinridders A, Wunderlich FT, Watzka M, Zaucke F, Blumbach K, et al. VKORC1 deficiency in mice causes early postnatal lethality due to severe bleeding. Thromb Haemost. 2009;101(6):1044–50.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu A, Sun H, Raymond RM Jr, Furie BC, Furie B, Bronstein M, et al. Fatal hemorrhage in mice lacking gamma-glutamyl carboxylase. Blood. 2007;109(12):5270–5. https://doi.org/10.1182/blood-2006-12-064188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui SX, Yu XF, Qu XJ. Roles and signaling pathways of Des-gamma-carboxyprothrombin in the progression of hepatocellular carcinoma. Cancer Invest. 2016;34(9):459–64. https://doi.org/10.1080/07357907.2016.1227445.

    Article  CAS  PubMed  Google Scholar 

  12. Younossi ZM, Otgonsuren M, Henry L, Venkatesan C, Mishra A, Erario M, et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology. 2015;62(6):1723–30. https://doi.org/10.1002/hep.28123.

    Article  CAS  PubMed  Google Scholar 

  13. Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, et al. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol. 2009;51(4):725–33. https://doi.org/10.1016/j.jhep.2009.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140(3):1071–83. https://doi.org/10.1053/j.gastro.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  15. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135(6):1972–83, 83 e1–11. https://doi.org/10.1053/j.gastro.2008.08.008.

  16. Wang C, Cigliano A, Delogu S, Armbruster J, Dombrowski F, Evert M, et al. Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: implications for the treatment of human liver cancer. Cell Cycle. 2013;12(13):1999–2010. https://doi.org/10.4161/cc.25099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005. https://doi.org/10.1038/onc.2010.236.

    Article  CAS  PubMed  Google Scholar 

  18. Duffy A, Wilkerson J, Greten TF. Hemorrhagic events in hepatocellular carcinoma patients treated with antiangiogenic therapies. Hepatology. 2013;57(3):1068–77. https://doi.org/10.1002/hep.26120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Costanzo GG, Tortora R, Iodice L, Lanza AG, Lampasi F, Tartaglione MT, et al. Safety and effectiveness of sorafenib in patients with hepatocellular carcinoma in clinical practice. Dig Liver Dis. 2012;44(9):788–92. https://doi.org/10.1016/j.dld.2012.04.001.

    Article  CAS  PubMed  Google Scholar 

  20. Zavaglia C, Airoldi A, Mancuso A, Vangeli M, Vigano R, Cordone G, et al. Adverse events affect sorafenib efficacy in patients with recurrent hepatocellular carcinoma after liver transplantation: experience at a single center and review of the literature. Eur J Gastroenterol Hepatol. 2013;25(2):180–6. https://doi.org/10.1097/MEG.0b013e328359e550.

    Article  CAS  PubMed  Google Scholar 

  21. Bhoori S, Toffanin S, Sposito C, Germini A, Pellegrinelli A, Lampis A, et al. Personalized molecular targeted therapy in advanced, recurrent hepatocellular carcinoma after liver transplantation: a proof of principle. J Hepatol. 2010;52(5):771–5. https://doi.org/10.1016/j.jhep.2010.01.025.

    Article  CAS  PubMed  Google Scholar 

  22. O’Neil BH, Goff LW, Kauh JS, Strosberg JR, Bekaii-Saab TS, Lee RM, et al. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2011;29(17):2350–6. https://doi.org/10.1200/JCO.2010.33.9432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armstrong AJ, Shen T, Halabi S, Kemeny G, Bitting RL, Kartcheske P, et al. A phase II trial of temsirolimus in men with castration-resistant metastatic prostate cancer. Clin Genitourin Cancer. 2013;11(4):397–406. https://doi.org/10.1016/j.clgc.2013.05.007.

    Article  PubMed  Google Scholar 

  24. Altomare I, Bendell JC, Bullock KE, Uronis HE, Morse MA, Hsu SD, et al. A phase II trial of bevacizumab plus everolimus for patients with refractory metastatic colorectal cancer. Oncologist. 2011;16(8):1131–7. https://doi.org/10.1634/theoncologist.2011-0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Assi H, Abdel-Samad N. Severe gastrointestinal hemorrhage during targeted therapy for advanced breast carcinoma. Curr Oncol. 2014;21(5):e732–5. https://doi.org/10.3747/co.21.2038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Junpaparp P, Sharma B, Samiappan A, Rhee JH, Young KR. Everolimus-induced severe pulmonary toxicity with diffuse alveolar hemorrhage. Ann Am Thorac Soc. 2013;10(6):727–9. https://doi.org/10.1513/AnnalsATS.201309-332LE.

    Article  PubMed  Google Scholar 

  27. Kakimoto M, Nakata T, Imaizumi K, Hirano T, Murata T, Okuno K, et al. Subclavian artery hemorrhage related to everolimus in a patient with recurrent breast cancer—a case report. Gan To Kagaku Ryoho. 2015;42(12):1806–8.

    CAS  PubMed  Google Scholar 

  28. Coleman RL, Sill MW, Thaker PH, Bender DP, Street D, McGuire WP, et al. A phase II evaluation of selumetinib (AZD6244, ARRY-142886), a selective MEK-1/2 inhibitor in the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2015;138(1):30–5. https://doi.org/10.1016/j.ygyno.2015.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang AG, Moon HB, Lee MR, Hwang CY, Kwon KS, Yu SL, et al. Gender-dependent hepatic alterations in H-ras12V transgenic mice. J Hepatol. 2005;43(5):836–44. https://doi.org/10.1016/j.jhep.2005.04.012.

    Article  CAS  PubMed  Google Scholar 

  30. Wang AG, Song YN, Chen J, Li HL, Dong JY, Cui HP, et al. Activation of RAS/ERK alone is insufficient to inhibit RXRalpha function and deplete retinoic acid in hepatocytes. Biochem Biophys Res Commun. 2014;452(3):801–7. https://doi.org/10.1016/j.bbrc.2014.09.007.

    Article  CAS  PubMed  Google Scholar 

  31. Wada H, Usui M, Sakuragawa N. Hemostatic abnormalities and liver diseases. Semin Thromb Hemost. 2008;34(8):772–8. https://doi.org/10.1055/s-0029-1145259.

    Article  CAS  PubMed  Google Scholar 

  32. Lisman T, Caldwell SH, Burroughs AK, Northup PG, Senzolo M, Stravitz RT, et al. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53(2):362–71. https://doi.org/10.1016/j.jhep.2010.01.042.

    Article  PubMed  Google Scholar 

  33. Amitrano L, Guardascione MA, Brancaccio V, Balzano A. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22(1):83–96. https://doi.org/10.1055/s-2002-23205.

    Article  CAS  PubMed  Google Scholar 

  34. Slichter SJ. Evidence-based platelet transfusion guidelines. Hematology. 2007. https://doi.org/10.1182/asheducation-2007.1.172.

    Article  PubMed  Google Scholar 

  35. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost (JTH). 2013;11(2):223–33. https://doi.org/10.1111/jth.12075.

    Article  CAS  Google Scholar 

  36. Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol. 2009;22(1):49–60. https://doi.org/10.1016/j.beha.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  37. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427(6974):537–41. https://doi.org/10.1038/nature02214.

    Article  CAS  PubMed  Google Scholar 

  38. Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, Thorgeirsson SS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology. 2008;135(4):1322–32. https://doi.org/10.1053/j.gastro.2008.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dai J, Bercury KK, Macklin WB. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation. Glia. 2014;62(12):2096–109. https://doi.org/10.1002/glia.22729.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Woo HY, Heo J. Sorafenib in liver cancer. Expert Opin Pharmacother. 2012;13(7):1059–67. https://doi.org/10.1517/14656566.2012.679930.

    Article  CAS  PubMed  Google Scholar 

  41. Cui SX, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, et al. Des-gamma-carboxy prothrombin antagonizes the effects of Sorafenib on human hepatocellular carcinoma through activation of the Raf/MEK/ERK and PI3 K/Akt/mTOR signaling pathways. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9168.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Inagaki Y, Tang W, Makuuchi M, Hasegawa K, Sugawara Y, Kokudo N. Clinical and molecular insights into the hepatocellular carcinoma tumour marker des-gamma-carboxyprothrombin. Liver Int. 2011;31(1):22–35. https://doi.org/10.1111/j.1478-3231.2010.02348.x.

    Article  CAS  PubMed  Google Scholar 

  43. Tamano M, Sugaya H, Oguma M, Iijima M, Yoneda M, Murohisa T, et al. Serum and tissue PIVKA-II expression reflect the biological malignant potential of small hepatocellular carcinoma. Hepatol Res. 2002;22(4):261–9.

    Article  PubMed  Google Scholar 

  44. Marrero JA, Feng Z, Wang Y, Nguyen MH, Befeler AS, Roberts LR, et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology. 2009;137(1):110–8. https://doi.org/10.1053/j.gastro.2009.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang YS, Chu JH, Cui SX, Song ZY, Qu XJ. Des-gamma-carboxy prothrombin (DCP) as a potential autologous growth factor for the development of hepatocellular carcinoma. Cell Physiol Biochem. 2014;34(3):903–15. https://doi.org/10.1159/000366308.

    Article  CAS  PubMed  Google Scholar 

  46. Matsubara M, Shiraha H, Kataoka J, Iwamuro M, Horiguchi S, Nishina S, et al. Des-gamma-carboxyl prothrombin is associated with tumor angiogenesis in hepatocellular carcinoma. J Gastroenterol Hepatol. 2012;27(10):1602–8. https://doi.org/10.1111/j.1440-1746.2012.07173.x.

    Article  CAS  PubMed  Google Scholar 

  47. Fujikawa T, Shiraha H, Ueda N, Takaoka N, Nakanishi Y, Matsuo N, et al. Des-gamma-carboxyl prothrombin-promoted vascular endothelial cell proliferation and migration. J Biol Chem. 2007;282(12):8741–8. https://doi.org/10.1074/jbc.M609358200.

    Article  CAS  PubMed  Google Scholar 

  48. Furie B, Furie BC. Molecular basis of vitamin K-dependent gamma-carboxylation. Blood. 1990;75(9):1753–62.

    CAS  PubMed  Google Scholar 

  49. Ueda N, Shiraha H, Fujikawa T, Takaoka N, Nakanishi Y, Suzuki M, et al. Exon 2 deletion splice variant of gamma-glutamyl carboxylase causes des-gamma-carboxy prothrombin production in hepatocellular carcinoma cell lines. Mol Oncol. 2008;2(3):241–9. https://doi.org/10.1016/j.molonc.2008.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bertino G, Ardiri AM, Boemi PM, Ierna D, Interlandi D, Caruso L, et al. A study about mechanisms of des-gamma-carboxy prothrombin’s production in hepatocellular carcinoma. Panminerva Med. 2008;50(3):221–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30872950). A. G. Wang and J. Y. Wang conceived of the research ideas, supervised the project and revised the manuscript. Y. F. Liu and H. L. Li performed experiments, analyzed data and wrote the manuscript. J. Y. Dong, L. Ma, A. J. Liao, Z. N. Rong, L. Cao, Z, Zhou. F. J. Wang conducted animal and molecular experiments. L. Ma, A. J. Liao recruited clinical data and human samples in the clinical study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyu Wang or Aiguo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, H., Dong, J. et al. mTOR and ERK regulate VKORC1 expression in both hepatoma cells and hepatocytes which influence blood coagulation. Clin Exp Med 19, 121–132 (2019). https://doi.org/10.1007/s10238-018-0528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0528-z

Keywords

Navigation