Clinical and Experimental Medicine

, Volume 18, Issue 3, pp 363–372 | Cite as

Metabolic syndrome and the decreased levels of uric acid by leflunomide favor redox imbalance in patients with rheumatoid arthritis

  • Neide Tomimura Costa
  • Bruna Miglioranza Scavuzzi
  • Tatiana Mayumi Veiga Iriyoda
  • Marcell Alysson Batisti Lozovoy
  • Daniela Frizon Alfieri
  • Fabiano Aparecido de Medeiros
  • Marcelo Cândido de Sá
  • Pâmela Lonardoni Micheletti
  • Bruno Alexandre Sekiguchi
  • Edna Maria Vissoci Reiche
  • Michael Maes
  • Andréa Name Colado Simão
  • Isaias Dichi
Original Article


Oxidative stress plays a role in the pathophysiology of rheumatoid arthritis (RA). The aim of the present study was to verify the influence of metabolic syndrome (MetS) and disease-modifying antirheumatic drugs on nitrosative and oxidative biomarkers in patients with RA. A total of 177 patients with RA and 150 healthy volunteers participated in this study, which measured lipid hydroperoxides, advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), carbonyl protein, total radical-trapping antioxidant parameter (TRAP), uric acid (UA), and C-reactive protein (CRP). NOx and the NOx/TRAP ratio were significantly increased in RA, while no significant differences in lipid hydroperoxides, AOPP, UA, and TRAP levels were found between both groups. Treatment with leflunomide was associated with increased levels of carbonyl protein, and lowered levels in TRAP and UA, while the NOx/TRAP ratio further increased. NOx and the NOx/TRAP ratio were significantly higher in women than in men, while TRAP and UA were significantly lower in women. MetS was accompanied by increased AOPP and UA levels. RA was best predicted by increased NOx/TRAP ratio, CRP, and BMI. In conclusion, our data demonstrated that NOx and NOx/TRAP are strongly associated with RA physiopathology. Our findings suggest that inhibition of iNOS may become an interesting therapeutic approach for the treatment of RA. In addition, the presence of MetS and a decrease in levels of UA by leflunomide favor redox imbalance in RA patients. More studies are needed to evaluate the impact of antioxidant capacity reduction on RA progression.


Rheumatoid arthritis Oxidative stress Nitrosative stress Metabolic syndrome Leflunomide 



The study was supported by Grants from Coordination for the Improvement of Higher Level of Education Personnel (CAPES) of Brazilian Ministry of Education; Institutional Program for Scientific Initiation Scholarship (PIBIC) of the National Council for Scientific and Technological Development (CNPq); and State University of Londrina (PROPPG). We thank the University Hospital of State University of Londrina for technical supports.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

All the participants included in this study provided written informed consent.


  1. 1.
    Spector T. Rheumatoid arthritis. Rheum Dis Clin N Am. 1990;16:513–37.Google Scholar
  2. 2.
    Blanco LP, Ling S, Holoshitz J. Oxidative stress in rheumatoid arthritis: new insights. In: Dichi I, Breganó JW, Simão ANC, Cecchini R, editors. Role oxidative stress chronic diseases. 1st ed. Boca Raton: CRC Press; 2014. p. 481–500.CrossRefGoogle Scholar
  3. 3.
    Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE. 2016;11:e0152925.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schalkwijk J, van der Berg W, van de Putte L, Joosten L. An experimental model for hydrogen peroxide-induced tissue damage. Effects of a single inflammatory mediator on (peri)articular tissues. Arthritis Rheum. 1986;29:532–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6:265–78.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Halliwell B. Oxygen radicals, nitric oxide and human inflammatory joint disease. Ann Rheum Dis. 1995;54:505–10.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther. 2003;5:R234–40.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxford). 2003;42(Suppl 2):ii11–6.Google Scholar
  9. 9.
    Nakajima A, Aoki Y, Shibata Y, Sonobe M, Terajima F, Takahashi H, et al. Identification of clinical parameters associated with serum oxidative stress in patients with rheumatoid arthritis. Mod Rheumatol. 2014;24:926–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A. Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int. 2008;28:245–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Cacciapaglia F, Grazia Anelli M, Rizzo D, Morelli E, Mazzotta D, Scioscia C, et al. Effective tumour necrosis factor-blocking therapy reduces reactive oxygen metabolite level in rheumatoid arthritis. J Int Med Res. 2016;44:28–32.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kizaki K, Yamashita F, Hayashi T, Funakoshi N. Infliximab is equivalently suppressing oxidative stress compared to tocilizumab among well-controlled patients with rheumatoid arthritis. Int J Rheum Dis. 2016. Scholar
  13. 13.
    Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6:e1887.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    da Cunha V, Brenol CV, Brenol JC, Fuchs SC, Arlindo EM, Melo IM, et al. Metabolic syndrome prevalence is increased in rheumatoid arthritis patients and is associated with disease activity. Scand J Rheumatol. 2012;41:186–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Pierini D, Bryan NS. Nitric oxide availability as a marker of oxidative stress. Methods Mol Biol. 2015;1208:63–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Reddy SVB, Wanchu A, Khullar M, Govindrajan S, Bambery P. Leflunomide reduces nitric oxide production in patients with active rheumatoid arthritis. Int Immunopharmacol. 2005;5:1085–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Ueki Y, Miyake S, Tominaga Y, Eguchi K. Increased nitric oxide levels in patients with rheumatoid arthritis. J Rheumatol. 1996;23:230–6.PubMedGoogle Scholar
  18. 18.
    Sakurai H, Kohsaka H, Liu MF, Higashiyama H, Hirata Y, Kanno K, et al. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J Clin Invest. 1995;96:2357–63.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moon S-J, Kim E-K, Jhun JY, Lee HJ, Lee WS, Park S-H, et al. The active metabolite of leflunomide, A77 1726, attenuates inflammatory arthritis in mice with spontaneous arthritis via induction of heme oxygenase-1. J Transl Med. 2017;15:31.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Daoussis D, Kitas GD. Uric acid and cardiovascular risk in rheumatoid arthritis. Rheumatology. 2011;50:1354–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Daoussis D, Panoulas V, Toms T, John H, Antonopoulos I, Nightingale P, et al. Uric acid is a strong independent predictor of renal dysfunction in patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11:R116.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425:516–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Kang D-H, Park S-K, Lee I-K, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41:1287–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Kang DH, Ha SK. Uric acid puzzle: dual role as anti-oxidantand pro-oxidant. Electrolyte Blood Press. 2014;12:1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mazzali M, Kanbay M, Segal M, Shafiu M, Jalal D, Feig D, et al. Uric acid and hypertension: cause or effect? Curr Rheumatol Rep. 2010;12:108–17.CrossRefPubMedGoogle Scholar
  27. 27.
    Choe JY, Kim SK. Association between serum uric acid and inflammation in rheumatoid arthritis: perspective on lowering serum uric acid of leflunomide. Clin Chim Acta. 2015;438:29–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee JJ, Bykerk VP, Dresser GK, Boire G, Haraoui B, Hitchon C, et al. Reduction in serum uric acid may be related to methotrexate efficacy in early rheumatoid arthritis: data from the Canadian Early Arthritis Cohort (CATCH). Clin Med Insights Arthritis Musculoskelet Disord. 2016;9:37–43.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Simão ANC, Lozovoy MAB, Dichi I. The uric acid metabolism pathway as a therapeutic target in hyperuricemia related to metabolic syndrome. Expert Opin Ther Targets. 2012;16:1175–87.CrossRefPubMedGoogle Scholar
  30. 30.
    Simão A, Dichi J, Barbosa D, Cecchini R, Dichi I. Influence of uric acid and gamma-glutamyltransferase on total antioxidant capacity and oxidative stress in patients with metabolic syndrome. Nutrition. 2008;24:675–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Grundy S, Brewer HJ, Cleeman J, Smith SJ, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thrombolysis Vasc Biol. 2004;24:e13–8.CrossRefGoogle Scholar
  33. 33.
    Gonzalez Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10:93–100.CrossRefPubMedGoogle Scholar
  34. 34.
    Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Navarro-Gonzálvez JA, García-Benayas C, Arenas J. Semiautomated measurement of nitrate in biological fluids. Clin Chem. 1998;44:679–81.PubMedGoogle Scholar
  37. 37.
    Repetto M, Reides C, Gomez Carretero ML, Costa M, Griemberg G, Llesuy S. Oxidative stress in blood of HIV infected patients. Clin Chim Acta. 1996;255:107–17.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsikas D. Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res. 2005;39:797–815.CrossRefPubMedGoogle Scholar
  39. 39.
    Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, Buzás E, et al. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2010;12:210.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nagy G, Clark JM, Buzas E, Gorman C, Pasztoi M, Koncz A, et al. Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett. 2008;118:55–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Farrell AJ, Blake DR, Palmer RM, Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992;51:1219–22.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vasanthi P, Nalini G, Rajasekhar G. Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis. 2009;12:29–33.CrossRefPubMedGoogle Scholar
  43. 43.
    van’t Hof RJ, Hocking L, Wright PK, Ralston SH. Nitric oxide is a mediator of apoptosis in the rheumatoid joint. Rheumatology (Oxford). 2000;39:1004–8.CrossRefGoogle Scholar
  44. 44.
    Sokka T, Toloza S, Cutolo M, Kautiainen H, Makinen H, Gogus F, et al. Women, men, and rheumatoid arthritis: analyses of disease activity, disease characteristics, and treatments in the QUEST-RA Study. Arthritis Res Ther. 2009;11:R7.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition. 1997;13:65 (discussion 64, 66).PubMedGoogle Scholar
  46. 46.
    Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Lemarechal H, Allanore Y, Chenevier-Gobeaux C, Kahan A, Ekindjian O, Borderie D. Serum protein oxidation in patients with rheumatoid arthritis and effects of infliximab therapy. Clin Chim Acta. 2006;372:147–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Vasconcelos SML, Goulart MOF, de Moura JBF, Benfato MS, Kubota LT. Reactive oxygen and nitrogen species, antioxidants and reactive oxygen and nitrogen species, antioxidants and markers of oxidative damage in human blood: main analytical methods for their determination. Quim Nova. 2007;30:1323–38.CrossRefGoogle Scholar
  49. 49.
    Venturini D, Simão ANC, Dichi I. Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation. Nutr Res. 2015;35:759–65.CrossRefPubMedGoogle Scholar
  50. 50.
    Baskol G, Demir H, Baskol M, Kilic E, Ates F, Karakukcu C, et al. Investigation of protein oxidation and lipid peroxidation in patients with rheumatoid arthritis. Cell Biochem Funct. 2006;24:307–11.CrossRefPubMedGoogle Scholar
  51. 51.
    Leitemperguer M, Tatsch E, Kober H, Moresco R. Assessment of ischemia-modified albumin levels in patients with rheumatoid arthritis. Clin Lab. 2014;60:1065–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Costa NT, Veiga Iriyoda TM, Kallaur AP, Delongui F, Alfieri DF, Lozovoy MAB, et al. Influence of insulin resistance and TNF on the inflammatory process, oxidative stress, and disease activity in patients with rheumatoid arthritis. Oxid Med Cell Longev. 2016;2016:1–9.Google Scholar
  53. 53.
    Lozovoy MAB, Simão ANC, Panis C, Rotter MAC, Reiche EMV, Morimoto HK, et al. Oxidative stress is associated with liver damage, inflammatory status, and corticosteroid therapy in patients with systemic lupus erythematosus. Lupus. 2011;20:1250–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Oliveira SR, Kallaur AP, Reiche EMV, Kaimen-Maciel DR, Panis C, Lozovoy MAB, et al. Albumin and protein oxidation are predictors that differentiate relapsing-remitting from progressive clinical forms of multiple sclerosis. Mol Neurobiol. 2017;54:2961–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Luczaj W, Gindzienska-Sieskiewicz E, Jarocka-Karpowicz I, Andrisic L, Sierakowski S, Zarkovic N, et al. The onset of lipid peroxidation in rheumatoid arthritis: consequences and monitoring. Free Radic Res. 2016;50:304–13.CrossRefPubMedGoogle Scholar
  56. 56.
    Isik A, Koca SS, Ustundag B, Celik H, Yildirim A. Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin Rheumatol. 2007;26:342–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Jacobson GA, Ives SJ, Narkowicz C, Jones G. Plasma glutathione peroxidase (GSH-Px) concentration is elevated in rheumatoid arthritis: a case-control study. Clin Rheumatol. 2012;31:1543–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Kajanachumpol S, Vanichapuntu M, Verasertniyom O, Totemchokchyakarn K, Vatanasuk M. Levels of plasma lipid peroxide products and antioxidant status in rheumatoid arthritis. Southeast Asian J Trop Med Public Health. 2000;31:335–8.PubMedGoogle Scholar
  59. 59.
    Gambhir JK, Lali P, Jain AK. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem. 1997;30:351–5.CrossRefPubMedGoogle Scholar
  60. 60.
    El-barbary AM, Khalek MAA, Elsalawy AM, Hazaa SM. Assessment of lipid peroxidation and antioxidant status in rheumatoid arthritis and osteoarthritis patients. Egypt Rheumatol. 2011;33:179–85.CrossRefGoogle Scholar
  61. 61.
    Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M, et al. Chain breaking antioxidant status in rheumatoid arthritis: clinical and laboratory correlates. Ann Rheum Dis. 1991;50:81–6.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Stöckl D, Döring A, Thorand B, Heier M, Belcredi P, Meisinger C. Reproductive factors and serum uric acid levels in females from the general population: the KORA F4 Study. PLoS ONE. 2012;7:e32668.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Perez-Ruiz F, Nolla J. Influence of leflunomide on renal handling of urate and phosphate in patients with rheumatoid arthritis. J Clin Rheumatol. 2003;9:215–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Alcorn N, Saunders S, Madhok R. Benefit-risk assessment of leflunomide: an appraisal of leflunomide in rheumatoid arthritis 10 years after licensing. Drug Saf. 2009;32:1123–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Osiri M, Shea B, Welch V, Suarez-Almazor ME, Strand V, Tugwell P, et al. Leflunomide for the treatment of rheumatoid arthritis. Cochrane Database Syst. Rev. 2009 (Review). Google Scholar
  66. 66.
    Haroui B. Leflunomide. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH, editors. Rheumatology, Philadelphia; 2015. p. 451–8.Google Scholar
  67. 67.
    Elkayam O, Yaron I, Shirazi I, Judovitch R, Caspi D, Yaron M. Active leflunomide metabolite inhibits interleukin 1beta, tumour necrosis factor alpha, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann Rheum Dis. 2003;62:440–3.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Arida D, Silva L, Skare T. The hypouricemiant effect of leflunomide. Jt Bone Spine. 2014;81:273–4.CrossRefGoogle Scholar
  69. 69.
    Luczak A, Knevel R, Huizinga TWJ, van Nies JAB, van der Helm-van Mil A, De Vries-Bouwstra JK. No impact of serum uric acid on the outcome of recent-onset arthritis. Ann Rheum Dis. 2012;71:1424–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Panoulas VF, Milionis HJ, Douglas KMJ, Nightingale P, Kita MD, Klocke R, et al. Association of serum uric acid with cardiovascular disease in rheumatoid arthritis. Rheumatology. 2007;46:1466–70.CrossRefPubMedGoogle Scholar
  71. 71.
    Kellner H, Bornholdt K, Hein G. Leflunomide in the treatment of patients with early rheumatoid arthritis-results of a prospective non-interventional study. Clin Rheumatol. 2010;29:913–20.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Neide Tomimura Costa
    • 1
    • 2
  • Bruna Miglioranza Scavuzzi
    • 1
  • Tatiana Mayumi Veiga Iriyoda
    • 3
  • Marcell Alysson Batisti Lozovoy
    • 4
  • Daniela Frizon Alfieri
    • 1
  • Fabiano Aparecido de Medeiros
    • 5
  • Marcelo Cândido de Sá
    • 5
  • Pâmela Lonardoni Micheletti
    • 5
  • Bruno Alexandre Sekiguchi
    • 1
  • Edna Maria Vissoci Reiche
    • 4
  • Michael Maes
    • 6
  • Andréa Name Colado Simão
    • 4
  • Isaias Dichi
    • 2
  1. 1.Laboratory of Research in Applied ImmunologyUniversity of LondrinaLondrinaBrazil
  2. 2.Department of Internal MedicineUniversity of LondrinaLondrinaBrazil
  3. 3.Department of Rheumatology – PUCPontifícia Universidade CatólicaLondrinaBrazil
  4. 4.Department of Clinical PathologyClinical Analysis and Toxicology – University of LondrinaLondrinaBrazil
  5. 5.Post Graduate Program in Clinical and Laboratory PathophysiologyUniversity of LondrinaLondrinaBrazil
  6. 6.IMPACT Strategic Research Centre, School of MedicineDeakin UniversityGeelongAustralia

Personalised recommendations