Skip to main content

Advertisement

Log in

Patient-specific in silico endovascular repair of abdominal aortic aneurysms: application and validation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Non-negligible postinterventional complication rates after endovascular aneurysm repair (EVAR) leave room for further improvements. Since the potential success of EVAR depends on various patient-specific factors, such as the complexity of the vessel geometry and the physiological state of the vessel, in silico models can be a valuable tool in the preinterventional planning phase. A suitable in silico EVAR methodology applied to patient-specific cases can be used to predict stent-graft (SG)-related complications, such as SG migration, endoleaks or tissue remodeling-induced aortic neck dilatation and to improve the selection and sizing process of SGs. In this contribution, we apply an in silico EVAR methodology that predicts the final state of the deployed SG after intervention to three clinical cases. A novel qualitative and quantitative validation methodology, that is based on a comparison between in silico results and postinterventional CT data, is presented. The validation methodology compares average stent diameters pseudo-continuously along the total length of the deployed SG. The validation of the in silico results shows very good agreement proving the potential of using in silico approaches in the preinterventional planning of EVAR. We consider models of bifurcated, marketed SGs as well as sophisticated models of patient-specific vessels that include intraluminal thrombus, calcifications and an anisotropic model for the vessel wall. We exemplarily show the additional benefit and applicability of in silico EVAR approaches to clinical cases by evaluating mechanical quantities with the potential to assess the quality of SG fixation and sealing such as contact tractions between SG and vessel as well as SG-induced tissue overstresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acosta Santamaría V, Daniel G, Perrin D, Albertini J, Rosset E, Avril S (2018) Model reduction methodology for computational simulations of endovascular repair. Comput Methods Biomech Biomed Eng 21:1–10

    Article  Google Scholar 

  • Altnji H-E, Bou-Saïd B, Walter-Le Berre H (2015) Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: a numerical analysis. Med Eng Phys 37(1):23–33

    Article  Google Scholar 

  • Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B (2011) Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 33(3):281–289

    Article  Google Scholar 

  • Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S (2013) Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput Biol Med 43(4):386–394

    Article  Google Scholar 

  • Beebe HG, Cronenwett JL, Katzen BT, Brewster DC, Green RM, Investigators VET et al (2001) Results of an aortic endograft trial: impact of device failure beyond 12 months. J Vasc Surg 33(2):55–63

    Article  Google Scholar 

  • Biehler J, Gee MW, Wall WA (2015) Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme. Biomech Model Mechanobiol 14(3):489–513

    Article  Google Scholar 

  • Boas FE, Fleischmann D (2012) CT artifacts: causes and reduction techniques. Imaging Med 4(2):229–240

    Article  Google Scholar 

  • Cao P, Verzini F, Parlani G, De Rango P, Parente B, Giordano G, Mosca S, Maselli A (2003) Predictive factors and clinical consequences of proximal aortic neck dilatation in 230 patients undergoing abdominal aorta aneurysm repair with self-expandable stent-grafts. J Vasc Surg 37(6):1200–1205

    Article  Google Scholar 

  • Chang RW, Goodney P, Tucker L-Y, Okuhn S, Hua H, Rhoades A, Sivamurthy N, Hill B (2013) Ten-year results of endovascular abdominal aortic aneurysm repair from a large multicenter registry. J Vasc Surg 58(2):324–332

    Article  Google Scholar 

  • Chuter T, Ivancev K, Malina M, Resch T, Brunkwall J, Lindblad B, Risberg B (1997a) Aneurysm pressure following endovascular exclusion. Eur J Vasc Endovasc Surg 13(1):85–87

    Article  Google Scholar 

  • Chuter T, Wendt G, Hopkinson B, Scott R, Risberg B, Keiffer E, Raithel D, Van Bockel J, White G, Walker P (1997b) Bifurcated stent-graft for abdominal aortic aneurysm. Cardiovasc Surg 5(4):388–392

    Article  Google Scholar 

  • Cochennec F, Becquemin J, Desgranges P, Allaire E, Kobeiter H, Roudot-Thoraval F (2007) Limb graft occlusion following EVAR: clinical pattern, outcomes and predictive factors of occurrence. Eur J Vasc Endovasc Surg 34(1):59–65

    Article  Google Scholar 

  • Cook Medical (2018) Endovascular aortic repair—Abdominal, USA. Bloomington, Indiana

  • De Bock S, Iannaccone F, De Santis G, De Beule M, Van Loo D, Devos D, Vermassen F, Segers P, Verhegghe B (2012) Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J Mech Behav Biomed Mater 13:129–139

    Article  Google Scholar 

  • De Bock S, Iannaccone F, De Beule M, Vermassen F, Segers P, Verhegghe B (2014) What if you stretch the IFU? A mechanical insight into stent graft instructions for use in angulated proximal aneurysm necks. Med Eng Phys 36(12):1567–1576

    Article  Google Scholar 

  • de Souza Neto E, Perić D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20):3277–3296

    Article  MathSciNet  MATH  Google Scholar 

  • Demanget N, Avril S, Badel P, Orgéas L, Geindreau C, Albertini J-N, Favre J-P (2012) Computational comparison of the bending behavior of aortic stent-grafts. J Mech Behav Biomed Mater 5(1):272–282

    Article  Google Scholar 

  • Demanget N, Duprey A, Badel P, Orgéas L, Avril S, Geindreau C, Albertini J-N, Favre J-P (2013) Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts. J Endovasc Ther 20(4):523–535

    Article  Google Scholar 

  • Doll S, Schweizerhof K (2000) On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21

    Article  MATH  Google Scholar 

  • Ellozy SH, Carroccio A, Lookstein RA, Jacobs TS, Addis MD, Teodorescu VJ, Marin ML (2006) Abdominal aortic aneurysm sac shrinkage after endovascular aneurysm repair: correlation with chronic sac pressure measurement. J Vasc Surg 43(1):2–7

    Article  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc interface 3(6):15–35

    Article  Google Scholar 

  • Gasser TC, Görgülü G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48(1):179–188

    Article  Google Scholar 

  • Gee M, Förster C, Wall W (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72

    Article  MATH  Google Scholar 

  • Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571

    MathSciNet  MATH  Google Scholar 

  • Greenhalgh RM, Powell JT (2008) Endovascular repair of abdominal aortic aneurysm. N Engl J Med 358(5):494–501

    Article  Google Scholar 

  • Greenhalgh RM, Brown LC, Powell JT (2010) Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med 362(20):1863–1871

    Article  Google Scholar 

  • Haskett D, Johnson G, Zhou A, Utzinger U, Geest JV (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9(6):725–736

    Article  Google Scholar 

  • Hemmler A, Lutz B, Reeps C, Kalender G, Gee MW (2018) A methodology for in silico endovascular repair of abdominal aortic aneurysms. Biomech Model Mechanobiol 17(4):1–26

    Article  Google Scholar 

  • Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET et al (2005) An overview of the trilinos project. ACM Trans Math Softw (TOMS) 31(3):397–423

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180

    Article  Google Scholar 

  • Iannaccone F, De Beule M, De Bock S, Van der Bom IM, Gounis MJ, Wakhloo AK, Boone M, Verhegghe B, Segers P (2016) A finite element method to predict adverse events in intracranial stenting using microstents: in vitro verification and patient specific case study. Ann Biomed Eng 44(2):442–452

    Article  Google Scholar 

  • Jacobs TS, Won J, Gravereaux EC, Faries PL, Morrissey N, Teodorescu VJ, Hollier LH, Marin ML (2003) Mechanical failure of prosthetic human implants: a 10-year experience with aortic stent graft devices. J Vasc Surg 37(1):16–26

    Article  Google Scholar 

  • Kleinstreuer C, Li Z, Basciano C, Seelecke S, Farber M (2008) Computational mechanics of nitinol stent grafts. J Biomech 41(11):2370–2378

    Article  Google Scholar 

  • Kouvelos GN, Oikonomou K, Antoniou GA, Verhoeven EL, Katsargyris A (2017) A systematic review of proximal neck dilatation after endovascular repair for abdominal aortic aneurysm. J Endovasc Ther 24(1):59–67

    Article  Google Scholar 

  • Kwon S, Rectenwald J, Baek S (2011) Intrasac pressure changes and vascular remodeling after endovascular repair of abdominal aortic aneurysms: review and biomechanical model simulation. J Biomech Eng 133(1):011011

    Article  Google Scholar 

  • Mahnken AH (2012) CT imaging of coronary stents: past, present, and future. ISRN Cardiol

  • Maier A, Gee M, Reeps C, Eckstein H-H, Wall W (2010) Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol 9(5):511–521

    Article  Google Scholar 

  • Maleux G, Koolen M, Heye S (2009) Complications after endovascular aneurysm repair. Semin Interv Radiol 26(1):3–9

    Article  Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18

    Article  Google Scholar 

  • Moll FL, Powell J, Fraedrich G, Verzini F, Haulon S, Waltham M, Van Herwaarden J, Holt P, Van Keulen J, Rantner B et al (2011) Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg 41:S1–S58

    Article  Google Scholar 

  • Morlacchi S, Colleoni SG, Cárdenes R, Chiastra C, Diez JL, Larrabide I, Migliavacca F (2013) Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 35(9):1272–1281

    Article  Google Scholar 

  • Mortier P, Holzapfel GA, De Beule M, Van Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B (2010) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 38(1):88–99

    Article  Google Scholar 

  • Niestrawska JA, Viertler C, Regitnig P, Cohnert TU, Sommer G, Holzapfel GA (2016) Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling. J R Soc Interface 13(124):20160620

    Article  Google Scholar 

  • Ockert S, Boeckler D, Allenberg J, Schumacher H (2007) Rupturiertes abdominelles aortenaneurysma. Gefaesschirurgie 12(5):379–391

    Article  Google Scholar 

  • Ogden R (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Eng Sci R Soc 326(1567):565–584

    Article  MATH  Google Scholar 

  • Perrin D, Badel P, Orgéas L, Geindreau C, Dumenil A, Albertini J-N, Avril S (2015a) Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J Biomech 48(10):1868–1875

    Article  Google Scholar 

  • Perrin D, Demanget N, Badel P, Avril S, Orgéas L, Geindreau C, Albertini J-N (2015b) Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool. Int J Numer Methods Biomed Eng 31(1):e02698

    Article  Google Scholar 

  • Perrin D, Badel P, Orgeas L, Geindreau C, Roscoat S rolland du, Albertini J-N, Avril S (2016) Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J Mech Behav Biomed Mater 63:86–99

    Article  Google Scholar 

  • Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391

    Article  MathSciNet  MATH  Google Scholar 

  • Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3d finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465

    Article  MathSciNet  MATH  Google Scholar 

  • Prasad A, Xiao N, Gong X-Y, Zarins CK, Figueroa CA (2012) A computational framework for investigating the positional stability of aortic endografts. Biomech Model Mechanobiol 12(5):1–19

    Google Scholar 

  • Pugliese F, Cademartiri F, van Mieghem C, Meijboom WB, Malagutti P, Mollet NR, Martinoli C, de Feyter PJ, Krestin GP (2006) Multidetector ct for visualization of coronary stents. Radiographics 26(3):887–904

    Article  Google Scholar 

  • Rafii BY, Abilez OJ, Benharash P, Zarins CK (2008) Lateral movement of endografts within the aneurysm sac is an indicator of stent-graft instability. J Endovasc Ther 15(3):335–343

    Article  Google Scholar 

  • Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33(4):475–482

    Article  Google Scholar 

  • Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Meier V, Wall W, Essler M, Eckstein H-H, Gee M (2013) Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol 12(4):717–733

    Article  Google Scholar 

  • Romarowski R, Faggiano E, Conti M, Reali A, Morganti S, Auricchio F (2018) A novel computational framework to predict patient-specific hemodynamics after TEVAR: integration of structural and fluid-dynamics analysis by image elaboration. Computers and Fluids

  • Roy D, Lerouge S, Inaekyan K, Kauffmann C, Mongrain R, Soulez G (2016) Experimental validation of more realistic computer models for stent-graft repair of abdominal aortic aneurysms, including pre-load assessment. Int J Numer Methods Biomed Eng 32(12):e02769

    Article  Google Scholar 

  • Sampaio SM, Panneton JM, Mozes GI, Andrews JC, Bower TC, Karla M, Noel AA, Cherry KJ, Sullivan T, Gloviczki P (2004) Proximal type I endoleak after endovascular abdominal aortic aneurysm repair: predictive factors. Ann Vasc Surg 18(6):621–628

    Article  Google Scholar 

  • Sampaio SM, Panneton JM, Mozes G, Andrews JC, Noel AA, Kalra M, Bower TC, Cherry KJ, Sullivan TM, Gloviczki P (2006) Aortic neck dilation after endovascular abdominal aortic aneurysm repair: should oversizing be blamed? Ann Vasc Surg 20(3):338–345

    Article  Google Scholar 

  • Shiraev T, Agostinho N, Dubenec S (2018) Sizing considerations for gore excluder in angulated aortic aneurysm necks. Ann Vasc Surg 49:152–157

    Article  Google Scholar 

  • Sonesson B, Dias N, Malina M, Olofsson P, Griffin D, Lindblad B, Ivancev K (2003) Intra-aneurysm pressure measurements in successfully excluded abdominal aortic aneurysm after endovascular repair. J Vasc Surg 37(4):733–738

    Article  Google Scholar 

  • Sternbergh WC, Money SR, Greenberg RK, Chuter TA, Investigators Z et al (2004) Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage, and aortic neck dilation: results from the zenith multicenter trial. J Vasc Surg 39(1):20–26

    Article  Google Scholar 

  • Tonnessen BH, Sternbergh WC, Money SR (2005) Mid-and long-term device migration after endovascular abdominal aortic aneurysm repair: a comparison of aneurx and zenith endografts. J Vasc Surg 42(3):392–401

    Article  Google Scholar 

  • Vad S, Eskinazi A, Corbett T, McGloughlin T, Geest JPV (2010) Determination of coefficient of friction for self-expanding stent-grafts. J Biomech Eng 132(12):121007

    Article  Google Scholar 

  • van Prehn J, Schlösser F, Muhs B, Verhagen H, Moll F, van Herwaarden J (2009) Oversizing of aortic stent grafts for abdominal aneurysm repair: a systematic review of the benefits and risks. Eur J Vasc Endovasc Surg 38(1):42–53

    Article  Google Scholar 

  • Vukovic E, Czerny M, Beyersdorf F, Wolkewitz M, Berezowski M, Siepe M, Blanke P, Rylski B (2018) Abdominal aortic aneurysm neck remodeling after anaconda stent graft implantation. J Vasc Surg 68:1354–1359

    Article  Google Scholar 

  • Vu-Quoc L, Tan X (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. statics. Comput Methods Appl Mech Eng 192(9):975–1016

    Article  MATH  Google Scholar 

  • Wolf YG, Hill BB, Lee WA, Corcoran CM, Fogarty TJ, Zarins CK (2001) Eccentric stent graft compression: an indicator of insecure proximal fixation of aortic stent graft. J Vasc Surg 33(3):481–487

    Article  Google Scholar 

  • Wyss TR, Dick F, Brown LC, Greenhalgh RM (2011) The influence of thrombus, calcification, angulation, and tortuosity of attachment sites on the time to the first graft-related complication after endovascular aneurysm repair. J Vasc Surg 54(4):965–971

    Article  Google Scholar 

  • Zarins CK, Bloch DA, Crabtree T, Matsumoto AH, White RA, Fogarty TJ (2003) Stent graft migration after endovascular aneurysm repair: importance of proximal fixation. J Vasc Surg 38(6):1264–1272

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support and funding by the Leibniz Rechenzentrum München (LRZ) of the Bavarian Academy of Sciences under Contract Number pr48ta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Gee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Definition of control curves and assignment of stent-graft nodes to the subsets \({\mathsf {A}}^{j}_{\mathrm {I}}\)

This section provides the definition of control curves \({\mathcal {C}} \subset {\mathbb {R}}^3\) associated with the morphing algorithm that is used for the in silico SG placement. For a detailed description of the morphing algorithm, the reader is referred to Hemmler et al. (2018).

These control curves are given in the initial configuration \({\mathcal {C}}_{\mathrm {I}}\) and in the target configuration \({\mathcal {C}}_{\mathrm {T}}\). At each point \(j=1,2,\ldots ,n_{\mathrm {C}}\) of the piecewise linear control curve \({\mathcal {C}}_{\mathrm {I}}\) in the initial configuration described by \(n_{\mathrm {C}}\) discrete points with the coordinates \({\varvec{x}}_{\mathrm {C},\mathrm {I}}^{j}\in {\mathcal {C}}_{\mathrm {I}}\), a semi-infinite bounding box \({\mathbb {B}^{j} \subset {\mathbb {R}}^3}\) is used to assign the nodes i of the SG with the reference coordinates \({\varvec{X}}^{i} \in ({\Omega }^{{\mathrm {S}}}_{\mathrm {0}} \cap {\Omega }^{\mathrm {G}}_{\mathrm {0}})\) to one point on the control curve \({\mathcal {C}}_{\mathrm {I}}\). \({\Omega }^{{\mathrm {S}}}_{\mathrm {0}}\) and \({\Omega }^{\mathrm {G}}_{\mathrm {0}}\) describe the undeformed configurations of stent and graft, respectively. The semi-infinite bounding box \({\mathbb {B}^{j} \subset {\mathbb {R}}^3}\) is defined by two parallel, infinite planes with a distance of h (Fig. 5). All nodes i of the SG with \({\varvec{X}}^{i} \in \mathbb {B}^{j}\) are assigned to point j of the centerline \({\mathcal {C}}_{\mathrm {I}}\) and are put into the subset \({\mathsf {A}}^{j}_{\mathrm {I}}\subseteq {\mathsf {A}}_{\mathrm {I}}=\{1,2,\ldots ,n^{\mathrm {SG}}\}\) where \(n^{\mathrm {SG}}\) is the number of nodes of the SG and where

$$\begin{aligned}&\overset{n_{\mathrm {C}}}{\underset{j=1}{\bigcup }} {\mathsf {A}}^j_{\mathrm {I}}={\mathsf {A}}_{\mathrm {I}}, \end{aligned}$$
(14a)
$$\begin{aligned}&{\mathsf {A}}^j_{\mathrm {I}}\cap {\mathsf {A}}^k_{\mathrm {I}}=\varnothing,\nonumber \\&\forall k \ne j,\,j=1,2,\ldots ,n_{\mathrm {C}},\,k=1,2,\ldots ,n_{\mathrm {C}} \end{aligned}$$
(14b)

holds.

Appendix 2: Control curve continuity conditions

The deformation of the SG during the in silico SG placement is fully described by the linear interpolation between two given configurations of the control curve, the initial configuration \({\mathcal{C}}_{\mathrm {I}}^{(\Pi)}\in {\mathbb {R}}^3\) and the target configuration \({\mathcal{C}}_{\mathrm {T}}^{(\Pi)}\in {\mathbb {R}}^3\). To ensure continuity between the three SG components \(\varPi =\{{\mathrm {P}},{\mathrm {L}},{\mathrm {R}}\}\) during the entire SG placement, the following conditions between the initial configurations \({\mathcal {C}}_{\mathrm {I}}^{(\varPi )}\) and the target configurations \({\mathcal {C}}_{\mathrm {T}}^{(\varPi )}\) of the control curves have to be satisfied (Fig. 4IIIb):

  • The distal end of the control curve \({\mathcal {C}}_{\mathrm {I}}^{{\mathrm {P}}}\) and the proximal ends of the control curves \({\mathcal {C}}_{\mathrm {I}}^{{\mathrm {L}}}\) and \({\mathcal {C}}_{\mathrm {I}}^{{\mathrm {R}}}\) have to be parallel and have to be in one plane. Same holds for the target configurations of the control curves \({\mathcal {C}}_{\mathrm {T}}^{{\mathrm {P}}}\)\({\mathcal {C}}_{\mathrm {T}}^{{\mathrm {L}}}\) and \({\mathcal {C}}_{\mathrm {T}}^{{\mathrm {R}}}\).

  • The longitudinal overlap \(l_{\mathrm {a}}\) of the three control curves as well as the transverse distance \(l_{\mathrm {b}}\) between the three control curves has to be the same in the initial configurations \({\mathcal {C}}_{\mathrm {I}}^{(\varPi )}\) and the target configurations \({\mathcal {C}}_{\mathrm {T}}^{(\varPi )}\).

Appendix 3: Center of gravity calculation for regular stent-graft meshes

For a regular SG mesh, the mean angular distance \(\bar{\theta }^{i}=\frac{1}{2}(\theta ^{i+1}-\theta ^{i-1})\) between two adjacent nodes in the set \({\mathsf {A}}_{\mathrm {I}}^{j}\) is \(\bar{\theta }^{i}=\frac{2\pi }{n^{j}}\) for each node i where \(n^{j}\) is the number of nodes in the set \({\mathsf {A}}_{\mathrm {I}}^{j}\). Hence, the calculation of the center of gravity of all nodes i in the set \({\mathsf {A}}_{\mathrm {I}}^{j}\) [Eq. (5)] reduces to the arithmetic mean

$$\begin{aligned} {\varvec{x}}_{\mathrm {C,De}}^{j}&=\frac{1}{2\pi }\underset{i\in {\mathsf {A}}_{\mathrm {I}}^{j}}{\sum } \bar{\theta }^{i} {\varvec{x}}^{i}=\frac{1}{n^{j}}\underset{i\in {\mathsf {A}}_{\mathrm {I}}^{j}}{\sum }{\varvec{x}}^{i}, \nonumber \\&\quad \forall j=1,2,\ldots ,n_{\mathrm {C}}, \end{aligned}$$
(15)

where \({\varvec{x}}^{i}\) are the current coordinates of all nodes i in the set \({\mathsf {A}}_{\mathrm {I}}^{j}\).

Appendix 4: Filtering of postinterventional CT data

A moving average filter with a span of

$$\begin{aligned} l_{\mathrm {span}}&=2 n_{\mathrm {postIV}} \left\lceil \frac{\varDelta z_{\mathrm {CT}}}{\bar{\varDelta s}_{\mathrm {postIV}}} \right\rceil + 1 \end{aligned}$$
(16)

is used to limit the impact of obvious artifacts in the stent diameter measurement from postinterventional CT data. In Eq. (16), \(\varDelta z_{\mathrm {CT}}=1\,{\mathrm {mm}}\) is the slice thickness of the postinterventional CT data, \(n_{\mathrm {postIV}}=3\) is a filtering constant that scales the length of the moving average filter. \(\bar{\varDelta s}_{\mathrm {postIV}}\) is the mean edge length of the piecewise linear curve \({\mathcal {C}}_{\mathrm {De}}\), i.e., the mean distance between the centers of gravity of the sets \({\mathsf {A}}_{\mathrm {I,postIV}}^{{\mathrm {S}},j}\) defined by Eq. (5). The result of the filtering process is visualized for patient 3 in Fig. 10. Each asterisk denotes the measured average diameter \(\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}},(\varPi ),j}\) of one distinct set \({\mathsf {A}}_{\mathrm {I,postIV}}^{{\mathrm {S}},(\varPi ),j}\) of SG part \(\varPi =\{{\mathrm {P}},{\mathrm {L}},{\mathrm {R}}\}\).

Fig. 10
figure 10

Difference between measured average stent diameters \(\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}},j}\) from postinterventional CT data and filtered average stent diameters \(\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}},j}\) as well as visualization of the standard deviation \(\sigma _{\mathrm {f}}\) for the proximal SG part (I), the left iliac SG part (II) and the right iliac SG part (III) of patient 3

Appendix 5: Quality estimation of segmented data from postinterventional CT scans

The quality of the postinterventional CT data is crucial for the reliability of a quantitative validation of the in silico EVAR results, but local artifacts have a non-negligible effect on the segmentation of the stent from postinterventional CT data. To obtain an estimation of the measurement inaccuracy due to the vagueness in the segmentation process of the stent from postinterventional CT data, we define the relative difference between the measured average diameter \(\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}},j}\) and the average diameter of the filtered data \(\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}},j}\) by

$$\begin{aligned} \epsilon _{f}^{j}&=\frac{\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}},j}-\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}},j}}{\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}},j}}, \quad \forall j=1,2,\ldots ,n_{\mathrm {C}}. \end{aligned}$$
(17)

Further, the standard deviation

$$\begin{aligned} \sigma _{f}&=\sqrt{\frac{1}{n_{\mathrm {C}}}\sum _{j=1,2,\ldots ,n_{\mathrm {C}}}\left( \epsilon _{f}^{j}-\mu _{f}\right) ^{2}} \end{aligned}$$
(18)

is calculated, where

$$\begin{aligned} \mu _{f}&=\frac{1}{n_{\mathrm {C}}}\sum _{j=1,2,\ldots ,n_{\mathrm {C}}}\epsilon _{f}^{j} \end{aligned}$$
(19)

is the mean relative difference. \(n_{\mathrm {C}}\) is the number of points describing the piecewise linear curve \({\mathcal {C}}_{\mathrm {De}}\) which is equivalent to the number of discrete sets \({\mathsf {A}}_{\mathrm {I,postIV}}^{j}\). In Fig. 10 we oppose the plain stent diameters from postinterventional CT data \(\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}},j}\), the filtered stent diameters \(\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}},j}\) and the standard deviation \(\sigma _{f}\) for patient 3.

A large standard deviation \(\sigma _{f}\) of the relative difference \(\epsilon _{f}^{j}\) is an indicator that the measurements are strongly affected by local artifacts of the segmented stent. The standard deviation \(\sigma _{\mathrm {f}}\) is very small for the proximal SG parts (\(\sigma _{\mathrm {f}}^{{\mathrm {P}}}\le 2.0\%\)) but more significant for the iliac SG parts (Table 6) due to two main reasons:

  • The segmentation process of the CZ-Spiral SGs from postinterventional CT data is more difficult as those stent limbs are less clearly visible.

  •  \(\sigma _{\mathrm {f}}\) is the standard deviation of the relative difference between the measured average diameters \(\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}},j}\) and the filtered average diameters \(\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}},j}\). Hence, local artifacts in the postinterventional CT data of equivalent size would have a larger relative impact on \(\sigma _{\mathrm {f}}\) in regions of small stent diameters such as in iliac SG parts.

Table 6 Standard deviation \(\sigma _{\mathrm {f}}\) of the relative difference between the measured average diameter \(\bar{d}_{\mathrm {postIV}}^{{\mathrm {S}}}\) and the average diameter of the filtered data \(\bar{d}_{\mathrm {postIV,f}}^{{\mathrm {S}}}\) of the postinterventional CT data in [%] according to Eq. (18) for the three patient-specific cases and the three SG parts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmler, A., Lutz, B., Kalender, G. et al. Patient-specific in silico endovascular repair of abdominal aortic aneurysms: application and validation. Biomech Model Mechanobiol 18, 983–1004 (2019). https://doi.org/10.1007/s10237-019-01125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-019-01125-5

Keywords

Navigation