Skip to main content
Log in

Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This study uses a one-dimensional fluid dynamics arterial network model to infer changes in hemodynamic quantities associated with pulmonary hypertension in mice. Data for this study include blood flow and pressure measurements from the main pulmonary artery for 7 control mice with normal pulmonary function and 5 mice with hypoxia-induced pulmonary hypertension. Arterial dimensions for a 21-vessel network are extracted from micro-CT images of lungs from a representative control and hypertensive mouse. Each vessel is represented by its length and radius. Fluid dynamic computations are done assuming that the flow is Newtonian, viscous, laminar, and has no swirl. The system of equations is closed by a constitutive equation relating pressure and area, using a linear model derived from stress–strain deformation in the circumferential direction assuming that the arterial walls are thin, and also an empirical nonlinear model. For each dataset, an inflow waveform is extracted from the data, and nominal parameters specifying the outflow boundary conditions are computed from mean values and characteristic timescales extracted from the data. The model is calibrated for each mouse by estimating parameters that minimize the least squares error between measured and computed waveforms. Optimized parameters are compared across the control and the hypertensive groups to characterize vascular remodeling with disease. Results show that pulmonary hypertension is associated with stiffer and less compliant proximal and distal vasculature with augmented wave reflections, and that elastic nonlinearities are insignificant in the hypertensive animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acosta S, Puelz C, Rivière B, Penny DJ, Brady KM, Rusin CR (2017) Cardiovascular mechanics in the early stages of pulmonary hypertension: a computational study. Biomech Model Mechanobiol 16:2093–2112

    Article  Google Scholar 

  • Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA (2016) On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J R Soc Interface. https://doi.org/10.1098/rsif.2016.0073

  • Arnold A, Battista C, Bia D, German YZ, Armentano RL, Tran HT, Olufsen MS (2017) Uncertainty quantification in a patient-specific one-dimensional arterial network model: EnKF-based inflow estimator. ASME J Verif Valid Uncert 2(1):14

    Google Scholar 

  • Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112. http://www.vmtk.org

  • Aslanidou L, Trachet B, Reymond P, Fraga-silva RA, Segers P, Stergiopulos N (2016) A 1D model of the arterial circulation in mice. ALTEX 33:13–28

    Article  Google Scholar 

  • Blanco PJ, Watanabe SM, Dari EA, Passos MARF, Feijo RA (2014) Blood flow distribution in an anatomically detailed arterial network. Biomech Model Mechanobiol 13(6):1303–1330

    Article  Google Scholar 

  • Boileau E, Nithiarasu P, Blanco PJ, Mller LO, Fossan FE, Hellevik LR, Donders WP, Huberts W, Willemet M, Alastruey J (2015) A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int J Numer Method Biomed Eng. https://doi.org/10.1002/cnm.2732

  • Boggs P, Tolle J (2000) Sequential quadratic programming for large-scale nonlinear optimization. J Comput Appl Math 124:123–137

    Article  MathSciNet  MATH  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Castelain V, Hervé P, Lecarpentier Y, Duroux P, Simonneau G, Chemla D (2001) Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol 37(4):1085–1092

    Article  Google Scholar 

  • Chen WW, Gao HG, Luo XY, Hill NA (2016) Study of cardiovascular function using a coupled left ventricle and systemic circulation model. J Biomech 49(12):2445–2454

    Article  Google Scholar 

  • Chnafa C, Brina O, Pereira VM, Steinman DA (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. AJNR Am J Neuroradiol 39(2):337–343

    Article  Google Scholar 

  • Dujardin JP, Stone DN (1981) Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. Med Biol Eng Comput 19:565–568

    Article  Google Scholar 

  • Ellwein LM, Marks DS, Migrino RQ, Foley WD, Sherman S, LaDisa JF (2016) Image-based quantification of 3D morphology for bifurcations in the left coronary artery: application to stent design. Catheter Cardiovasc Interv 87:1244–1255

    Article  Google Scholar 

  • Eck VG, Sturdy J, Hellevik LR (2017) Effects of arterial wall models and measurement uncertainties on cardiovascular model predictions. J Biomech 50:188–194

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  • Formaggia L, Lamponi D, Veneziani A (2006) Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput Methods Biomech Biomed Engin 9(5):273–88

    Article  Google Scholar 

  • Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6):1906–1912

    Article  Google Scholar 

  • Guan D, Liang F, Gremaud PA (2016) Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. J Biomech 49:1583–1592

    Article  Google Scholar 

  • Hellmes HK, Haynes FW, Dexter L (1949) Pulmonary capillary pressure in man. J Appl Physiol 2(1):24–29

    Article  Google Scholar 

  • Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52(2):195–200

    Article  Google Scholar 

  • Hollander EH, Wang JJ, Dobson GM, Parker KH, Tyberg JV (2001) Negative wave refections in pulmonary arteries. Am J Physiol Heart Circ Physiol 281(2):895–902

    Article  Google Scholar 

  • Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A 466:1551–1597

  • Hunter KS, Lammers SR, Shandas S (2011) Pulmonary vascular stiffness: measurement, modeling, and implications in normal and hypertensive pulmonary circulations. Comput Physiol 1:1413–1435

    Google Scholar 

  • Ioannou CV, Stergiopulos N, Katsamouris AN, Startchik I, Kalangos A, Licker MJ, Westerhof N, Morel DR (2003) Hemodynamics induced after acute reduction of proximal thoracic aorta compliance. Eur J Vasc Endovasc Surg 26:195–204

    Article  Google Scholar 

  • Karau K, Johnson R, Molthen R, Dhyani A, Haworth S, Hanger C, Roerig D, Dawson C (2011) Microfocal X-ray CT imaging and pulmonary arterial distensibility in excised rat lungs. Am J Physiol Heart Circ Physiol 281:H1447–H1457

    Article  Google Scholar 

  • Kheyfets VO, O’Dell W, Smith T, Reilly JJ, Finol EA (2013) Considerations for numerical modeling of the pulmonary circulation-a review with a focus on pulmonary hypertension. J Biomed Eng 135:061011–2

    Google Scholar 

  • Krenz GS, Dawson CA (2003) Flow and pressure distributions in vascular networks consisting of distensible vessels. Am J Physiol Heart Circ 284(6):H2192–H2203

    Article  Google Scholar 

  • Langewouters GJ, Wesseling KH, Goedhard WJ (1985) The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J Biomech 18:613–620

    Article  Google Scholar 

  • Lee P, Carlson BE, Chesler N, Olufsen MS, Qureshi MU, Smith NP, Sochi T, Beard DA (2016) Heterogeneous mechanics of the mouse pulmonary arterial network. Biomech Model Mechanobiol 15:1245–1261

    Article  Google Scholar 

  • Lankhaar JW, Westerhof N, Faes T, Marques K, Marcus J, Postmus P, Vonk-Noordegraaf A (2006) Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol 29(4):H1731–173

    Article  Google Scholar 

  • Li Y, Parker KH, Khir AW (2016) Using wave intensity analysis to determine local reflection coefficient in flexible tubes. J Biomech 49:2709–2717

    Article  Google Scholar 

  • Lungu A, Wild JM, Capener D, Kiely DG, Swift AJ, Hose DR (2014) MRI model-based non-invasive differential diagnosis in pulmonary hypertension. J Biomech 47:2941–2947

    Article  Google Scholar 

  • Lumens J, Delhaas T, Kirn B, Arts T (2009) Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann Biomed Eng 37(11):2234–2255

    Article  Google Scholar 

  • McDonald DA, Attinger EO (1965) The characteristics of arterial pulse wave propagation in the dog. Inf Exchange Group No. 3, Sci Mem 7

  • Meaney JFM, Beddy P (2012) Pulmonary MRA. In: Carr J, Carroll T (eds) Magnetic resonance angiography. Springer, New York

    Google Scholar 

  • Mynard J, Penny DJ, Smolich JJ (2008) Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients. J Biomech 41:3314–3321

    Article  Google Scholar 

  • Mynard JP, Smolich JJ (2015) One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann Biomed Eng 43:144–1460

    Article  Google Scholar 

  • Nichols WW, O’Rourke MF, Vlachopoulos C (2011) MCDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 6th edn. Hodder Arnold, London

    Google Scholar 

  • Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299

    Article  Google Scholar 

  • Olufsen MS, Hill NA, Vaughan GD, Sainsbury C, Johnson M (2012) Rarefaction and blood pressure in systemic and pulmonary arteries. J Fluid Mech 705:280–305

    Article  MathSciNet  MATH  Google Scholar 

  • Paun LM, Qureshi MU, Colebank M, Hill NA, Olufsen MS, Haider MA, Husmeier D (2018) MCMC methods for inference in a mathematical model of pulmonary circulation. Stat Neerl 1–33:2018

    MathSciNet  Google Scholar 

  • Presson RG Jr, Audi SH, Hanger CC, Zenk GM, Sidner RA, Linehan JH, Wagner WW Jr, Dawson CA (1998) Anatomic distribution of pulmonary vascular compliance. J Appl Physiol 84(1):303–310

    Article  Google Scholar 

  • Pursell ER, Vélez-Rendón D, Valdez-Jasso D (2016) Biaxial properties of the left and right pulmonary arteries in a monocrotaline rat animal model of pulmonary arterial hypertension. ASME J Biomech Eng 138:111004

    Article  Google Scholar 

  • Qureshi MU, Vaughan GD, Sainsbury C, Johnson M, Peskin CS, Olufsen MS, Hill NA (2014) Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech Model Mechanobiol 13(5):1137–1154

    Article  Google Scholar 

  • Qureshi MU, Hill NA (2015) A computational study of pressure wave reflections in the pulmonary arteries. J Math Biol 71:1525–1549

    Article  MathSciNet  MATH  Google Scholar 

  • Qureshi MU, Haider MA, Chesler NC, Olufsen MS (2017) Simulating the effects of hypoxia on pulmonary haemodynamics in mice. Proc CMBE 1:271–274

    Google Scholar 

  • Qureshi MU, Colebank MJ, Schreier DA, Tabima DM, Haider MA, Chesler NC, Olufsen MS (2018) Characteristic Impedance: frequency or time domain approach? Physiol Meas 39(1):014004. https://doi.org/10.1088/1361-6579/aa9d60

    Article  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) A computational study of pressure wave reflections in the pulmonary arteries. J Math Biol 71:1525–1549

    MathSciNet  Google Scholar 

  • Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222

    Article  Google Scholar 

  • Riches AC, Sharp JG, Thomas DB, Smith SV (1973) Blood volume determination in mouse. J Physiol 228(2):279–284

    Article  Google Scholar 

  • Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S (2011) Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 139:988–993

    Article  Google Scholar 

  • Safaei S, Bradley CP, Suresh V, Mithraratne K, Muller A, Ho H, Ladd D, Hellevik L, Omholt SW, Chase JG, Mller LO, Watanabe SM, Blanco PJ, de Bono B, Hunter PJ (2016) Roadmap for cardiovascular circulation model. J Physiol 594(23):6909–6928

    Article  Google Scholar 

  • Schreier DA, Hacker T, Hunder KS, Eickoff J, Liu A, Song G, Chesler NC (2014) Impact of hematocrit on right ventricular afterload during the progression of hypoxic pulmonary hypertension. J Appl Physiol 117(8):833–839

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, DeBacquer D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR (2007) Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension 49:1248–1255

    Article  Google Scholar 

  • Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Sanchez MA, Kumar RK, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41

    Article  Google Scholar 

  • Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of methods for estimation of total arterial compliance. Am J Physiol 268:H1540–1548

    Google Scholar 

  • Tabima DM, Roldan-Alzate A, Wang Z, Hacker TA, Molthen RC, Chesler NC (2012) Persistent vascular collagen accumulation alters hemodynamic recovery from chronic hypoxia. J Biomech 45:799–804

    Article  Google Scholar 

  • Tang B, Pickard S, Chan F, Tsao P, Taylor C, Feinstein J (2012) Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm Circ 2(4):470–476

    Article  Google Scholar 

  • Tran JS, Schiavazzi DE, Ramachandra AB, Kahnb AM, Marsden AL (2017) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138

    Article  MathSciNet  MATH  Google Scholar 

  • Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(1):23–27

    Article  Google Scholar 

  • Tawhai MH, Clark AR, Burrowes KS (2011) Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm Circ 1(2):224–238

    Article  Google Scholar 

  • Vanderpool RR, Kim AR, Chesler NC (2011) Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function. J Appl Physiol 110:188–198

    Article  Google Scholar 

  • Valdez-Jasso D, Bia D, Zcalo Y, Armentano RL, Haider MA, Olufsen MS (2011) Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions. Ann Biomed Eng 39:1438–1456

    Article  Google Scholar 

  • Valdez-Jasso D (2010) Modeling and identification of vascular biomechanical properties in large arteries. PhD ihesis, North Carolina State University, Raleigh, NC

  • van de Vosse FN, Stergiopulos N (2011) Pulse wave propagation in the arterial tree. Annu Rev Fluid Mech 43:467–499

    Article  MathSciNet  MATH  Google Scholar 

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Machi Learn Res 11:3571–3594

    MathSciNet  MATH  Google Scholar 

  • Watanabe S (2013) A widely applicable bayesian information criterion. J Mach Learn Res 14:867–897

    MathSciNet  MATH  Google Scholar 

  • Wang Z, Chesler NC (2011) Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 1(2):212–223

    Article  Google Scholar 

  • Westerhof N, Sipkema P, Van Den Bos GC, Elzinga G (1972) Forward and backward waves in the arterial system. Cardvasc Res 6:648–656

    Article  Google Scholar 

  • Westerhof N, Lankhaar J, Westerhof B (2009) The arterial windkessel. Med Biol Eng Comput 47:131–141

    Article  Google Scholar 

  • Williams ND, Wind-Willassen O, Wright AA, Program REU, Mehlsen J, Ottesen JT, Olufsen MS (2014) Patient specific modeling of head-up tilt. Math Med Biol 31:365–392

    Article  MathSciNet  MATH  Google Scholar 

  • Willemet M, Alastruey J (2015) Arterial pressure and flow wave analysis using time-domain 1-D hemodynamics. Ann Biomed Eng 43:190–206

    Article  Google Scholar 

  • Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G (2003) Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp Physiol 88:431–440

    Article  Google Scholar 

  • Yang W, Feinstein J, Vignon-Clementel I (2016) Adaptive outflow boundary conditions improve post-operative predictions after repair of peripheral pulmonary artery stenosis. Biomech Model Mechanobiol 15(5):1345–1353

    Article  Google Scholar 

  • Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. www.itksnap.org

Download references

Funding

This study was supported by the National Science Foundation (NSF) awards NSF-DMS # 1615820, NSF-DMS # 1246991 and Engineering and Physical Sciences Research Council (EPSRC) of the UK, grant reference number EP/N014642/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette S. Olufsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1305 KB)

Appendices

Appendix

A Vascular compliance

The volumetric compliance, defined as \(C_\mathrm{v}= \hbox {d}V/\hbox {d}p\) (ml/mmHg) for a cylindrical vessel with volume V, is computed from the linear (\(C_\text {lin}\)) and nonlinear (\(C_\text {nlin}\)) models. For a longitudinally tethered vessel i in the network

$$\begin{aligned} C_\mathrm{v} = \frac{\hbox {d}V}{\hbox {d}p} \equiv L\frac{\hbox {d}A}{\hbox {d}p}, \end{aligned}$$
(28)

where L is the fixed length of the vessel and \(\hbox {d}A/\hbox {d}p\) is computed from Eqs. (3) and (4), giving

$$\begin{aligned} C_\text {lin}= C_{0.\text {lin}}\left( \frac{p}{\beta }+1\right) ,\qquad \text {and}\qquad C_\text {nlin}= C_{0.\text {nlin}}\left( \frac{p_1^2}{p^2 + p_1^2}\right) , \end{aligned}$$
(29)

where \(C_0\) denotes the reference compliance at \(p=0\), given by

$$\begin{aligned} C_{0.\text {lin}} = \frac{2A_0L }{\beta },\qquad \text {and}\qquad C_{0.\text {nlin}}=\frac{\gamma A_0 L}{\pi p_1}. \end{aligned}$$
(30)

B Pulse wave velocity

The pulse wave velocity (PWV), c (cm/s), is computed from the eigenvalues of the hyperbolic system of Eq. (2), from \(\lambda _{1,2} = q/A \pm c\) where

$$\begin{aligned} c=\sqrt{\frac{A}{\rho }\frac{\hbox {d} p}{\hbox {d}A}} = \sqrt{\frac{AL}{\rho \, C_\mathrm{v}}}. \end{aligned}$$
(31)

Setting \(C_\mathrm{v} = C_\text {lin}\) and \(C_\text {nlin}\) in Eq. (31) gives the squared PWV computed for the linear and nonlinear wall models, respectively

$$\begin{aligned} c^2_\text {lin}= & {} c^2_{0.\text {lin}}+\frac{p}{2\rho },\nonumber \\ c^2_\text {nlin}= & {} c^2_{0.\text {nlin}}\left( \frac{\gamma }{\pi }\tan ^{-1}(p/p_1)+1\right) \left( 1+(p/p_1)^2\right) , \end{aligned}$$
(32)

where \(c_0^2\) is the square of the reference PWV at \(p=0\), given by

$$\begin{aligned} c^2_{0.\text {lin}}=\frac{\beta }{2\rho },\qquad \text {and}\qquad c^2_{0.\text {nlin}}=\frac{\pi p_1}{\gamma \rho }. \end{aligned}$$
(33)

We use PWV in wave intensity analysis, described in Sect. 2.7, for separating the incident and reflected waves.

C Nominal parameter values

Table 4 Nominal values for wall parameters and compliance for individual mice in each group

As described in Sect. 2.5, nominal values for the nonlinear model are set as \(p_1=\beta /\pi \) and \(\gamma = 2\) for all cases. Moreover, nominal values for \(R_{\mathrm{T},j}\) are computed from \(R_\mathrm{T}\) reported in the table above using methods described in Sect. 2.5 and the network dimensions stated in Table 2. For all cases, the resistance ratio \(a\equiv R_1/R_\mathrm{T} = 0.2\).

D Optimized parameter values

For all cases, we optimized \(\beta , \gamma ,\) and \( p_1\) for the wall models, and the global scaling parameters \(r_1, r_2, c_1\) for the Windkessel model, such that

$$\begin{aligned} {R}_{1,j} = r_1R_{10,j}, \quad {R}_{2,j} = r_2R_{20,j},\quad {C}_{\mathrm{p},j} = c_1C_{p0,j} \end{aligned}$$

where 0 indicate the nominal quantity. Upper and lower bounds for the optimization intervals are given in Table 5.

Table 5 Bounds for optimization
Table 6 Optimized values for individual mice in each group

E Convergence of optimization algorithm

To test the convergence of our optimization algorithm, we carried out repeated optimizations in four- and five-dimensional parameter spaces for the linear and nonlinear wall models, respectively. This was done only for the representative control mouse. Optimizations were initialized from 20 initial values, drawn using the Sobol sequence to uniformly cover the entire domain (i.e. predefined interval). Regardless of the starting value, the algorithm converged to the same values for a given parameter. Also, Fig. 13 shows the convergence to a unique minimum of the objective function regardless of the starting point. For the sake of computational efficiency, parallel optimization was conducted starting from only four initial values for the remaining mice. Figures 11 and 12 show the optimization history (starting from 20 initial points) for the linear and nonlinear cases from the control mouse.

Fig. 11
figure 11

Time history of optimization algorithm for the case of linear wall model. As a test case, 20 starting points were sampled from the parameter interval (vertical axis). Each color represents an iteration chain associated with a given starting point. All of them converged to the same final value. On average, it took 28 iterations to converge to an optimal value using the linear wall model

Fig. 12
figure 12

Time history of optimization algorithm for the case of nonlinear wall model. As a test case, 20 starting points were sampled from the parameter interval (vertical axis). Each color represents an iteration chain associated with a given starting point. All of them converged to the same final value. On average, it took 52 iterations to converge to an optimal value using the nonlinear wall model

Fig. 13
figure 13

Time history of objective function’s values during the optimization process starting from 20 starting points. Each color represents an iteration chain associated with a given starting point. The plots are shown on a linear-log scale (\(\log (S)\)) both using the linear and the nonlinear wall models for the representative control mouse. Optimization converges to a minimum of objective function irrespective of the starting point

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, M.U., Colebank, M.J., Paun, L.M. et al. Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism. Biomech Model Mechanobiol 18, 219–243 (2019). https://doi.org/10.1007/s10237-018-1078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1078-8

Keywords

Navigation