Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 1, pp 169–180 | Cite as

Stress enhanced calcium kinetics in a neuron

  • Aayush Kant
  • Tanmay K. Bhandakkar
  • Nikhil V. Medhekar
Original Paper
  • 153 Downloads

Abstract

Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca\(^{2+}\)) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca\(^{2+}\) concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.

Keywords

Coupled stress diffusion model Traumatic Brain Injury Damage measure for neurons 

Mathematics Subject Classification

74L15 92-08 92C10 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Supplementary material

10237_2017_952_MOESM1_ESM.pdf (168 kb)
Supplementary material 1 (pdf 168 KB)
10237_2017_952_MOESM2_ESM.nb (77 kb)
Supplementary material 2 (nb 76 KB)
10237_2017_952_MOESM3_ESM.nb (58 kb)
Supplementary material 3 (nb 57 KB)

References

  1. Baker HL, Errington RJ, Davies SC, Campbell AK (2002) A mathematical model predicts that calreticulin interacts with the endoplasmic reticulum Ca\(^{2+}\)-atpase. Biophys J 82(2):582–590CrossRefGoogle Scholar
  2. Bandak F, Zhang A, Tannous R, DiMasi F, Masiello P, Eppinger RH (2001) Simon: a simulated injury monitor; application to head injury assessment. In: Proceedings of international technical conference on the enhanced safety of vehicles, National Highway Traffic Safety Administration, pp 7–14Google Scholar
  3. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529CrossRefGoogle Scholar
  4. Blanke ML, VanDongen AMJ (2009) chapter 13—Activation mechanisms of the NMDA receptor. In: VanDongen AMJ (ed) Biology of the NMDA receptor. Taylor & Francis, Boca Raton. http://www.ncbi.nlm.nih.gov/books/NBK5274/
  5. Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814CrossRefGoogle Scholar
  6. Falcke M (2004) Reading the patterns in living cells the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440CrossRefGoogle Scholar
  7. Farkas O, Lifshitz J, Povlishock JT (2006) Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury? J Neurosci 26(12):3130–3140CrossRefGoogle Scholar
  8. Faul M, Xu L, Wald M, Coronado V (2010) Traumatic brain injury in the united states: emergency department visits, hospitalizations, and deaths 2002–2006. National Center for Injury Prevention and ControlGoogle Scholar
  9. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115(1):4–18CrossRefGoogle Scholar
  10. Geddes DM, Cargill RS (2001) An in vitro model of neural trauma: device characterization and calcium response to mechanical stretch. J Biomech Eng 123(3):247–255CrossRefGoogle Scholar
  11. Geddes-Klein DM, Schiffman KB, Meaney DF (2006) Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J Neurotrauma 23(2):193–204CrossRefGoogle Scholar
  12. Giza CC, Hovda DA (2001) The neurometabolic cascade of concussion. J Athl Train 36(3):228Google Scholar
  13. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14(7):1261–1273CrossRefGoogle Scholar
  14. Hemphill MA, Dauth S, Yu CJ, Dabiri BE, Parker KK (2015) Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron 85(6):1177–1192CrossRefGoogle Scholar
  15. Hill CS, Coleman MP, Menon DK (2016) Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci 39(5):311–324CrossRefGoogle Scholar
  16. Kass I, Lipton P (1986) Calcium and long-term transmission damage following anoxia in dentate gyrus and ca1 regions of the rat hippocampal slice. J Physiol 378(1):313–334CrossRefGoogle Scholar
  17. Kilinc D (2008) Mechanisms and prevention of axonal damage in response to mechanical trauma to cultured neurons. PhD thesis, Drexel UniversityGoogle Scholar
  18. Kloda A, Lua L, Hall R, Adams DJ, Martinac B (2007) Liposome reconstitution and modulation of recombinant n-methyl-d-aspartate receptor channels by membrane stretch. Proc Natl Acad Sci 104(5):1540–1545CrossRefGoogle Scholar
  19. Kowalewski JM, Uhlén P, Kitano H, Brismar H (2006) Modeling the impact of store-operated Ca\(^{2+}\) entry on intracellular Ca\(^{2+}\) oscillations. Math Biosci 204(2):232–249MathSciNetCrossRefMATHGoogle Scholar
  20. Kristián T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29(3):705–718CrossRefGoogle Scholar
  21. LaPlaca MC, Lee VMY, Thibault LE (1997) An in vitro model of traumatic neuronal injury: loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J Neurotrauma 14(6):355–368CrossRefGoogle Scholar
  22. Lusardi TA, Rangan J, Sun D, Smith DH, Meaney DF (2004) A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann Biomed Eng 32(11):1546–1559CrossRefGoogle Scholar
  23. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267(20):14,483–14,489Google Scholar
  24. Maneshi MM, Sachs F, Hua SZ (2015) A threshold shear force for calcium influx in an astrocyte model of traumatic brain injury. J Neurotrauma 32(13):1020–1029CrossRefGoogle Scholar
  25. Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ (2017) Mechanical stress activates nmda receptors in the absence of agonists. Sci Rep 7(39):610Google Scholar
  26. Mao H, Zhang L, Yang KH, King AI (2006) Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash 50:583Google Scholar
  27. Menon DK (1999) Cerebral protection in severe brain injury: physiological determinants of outcome and their optimisation. Br Med Bull 55(1):226–258CrossRefGoogle Scholar
  28. Nilsson P, Hillered L, Olsson Y, Sheardown M, Hansen A (1993) Regional changes in interstitial K\(^+\) and Ca\(^{2+}\) levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 13(2):183–192CrossRefGoogle Scholar
  29. Palmer AM, Marion DW, Botscheller ML, Bowen DM, DeKosky ST (1994) Increased transmitter amino acid concentration in human ventricular csf after brain trauma. Neuroreport 6(1):153–156CrossRefGoogle Scholar
  30. Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 6(6):1307–1315CrossRefGoogle Scholar
  31. Roozenbeek B, Maas AI, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9(4):231–236CrossRefGoogle Scholar
  32. Rzigalinski B, Weber J, Willoughby K, Ellis E (1998) Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem 70(6):2377–2385CrossRefGoogle Scholar
  33. Rzigalinski BA, Liang S, McKinney JS, Willoughby KA, Ellis EF (1997) Effect of Ca\(^{2+}\) on in vitro astrocyte injury. J Neurochem 68(1):289–296CrossRefGoogle Scholar
  34. Slepchenko BM, Schaff JC, Carson JH, Loew LM (2002) Computational cell biology: spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31(1):423–441CrossRefGoogle Scholar
  35. Smith DH, Meaney DF (2000) Axonal damage in traumatic brain injury. Neurosci 6(6):483–495Google Scholar
  36. Sneyd J, Keizer J, Sanderson M (1995) Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 9(14):1463–1472CrossRefGoogle Scholar
  37. Weber JT (2004) Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res 1(2):151–171Google Scholar
  38. Weber JT (2012) Altered calcium signaling following traumatic brain injury. Front Pharmacol 3:60CrossRefGoogle Scholar
  39. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9CrossRefGoogle Scholar
  40. Williams PR, Marincu BN, Sorbara CD, Mahler CF, Schumacher AM, Griesbeck O, Kerschensteiner M, Misgeld T (2014) A recoverable state of axon injury persists for hours after spinal cord contusion in vivo. Nat Commun. doi: 10.1038/ncomms6683 Google Scholar
  41. Wojda U, Salinska E, Kuznicki J (2008) Calcium ions in neuronal degeneration. IUBMB Life 60(9):575–590CrossRefGoogle Scholar
  42. Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI (2001) Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash 45(11):369–394Google Scholar
  43. Zink BJ (2001) Traumatic brain injury outcome: concepts for emergency care. Ann Emerg Med 37(3):318–332CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringMonash UniversityVictoriaAustralia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia
  3. 3.IITB-Monash Research AcademyIIT BombayPowai, MumbaiIndia

Personalised recommendations