Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 1, pp 133–145 | Cite as

Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure

  • Sijia Zhang
  • Vahhab Zarei
  • Beth A. Winkelstein
  • Victor H. Barocas
Original Paper

Abstract

The facet capsular ligaments encapsulate the bilateral spinal facet joints and are common sources of painful injury due to afferent innervation. These ligaments exhibit architectural complexity, which is suspected to contribute to the experimentally observed lack of co-localization between macroscopic strain and microstructural tissue damage. The heterogeneous and multiscale nature of this ligament, combined with challenges in experimentally measuring its microscale mechanics, hinders the ability to understand sensory mechanisms under normal or injurious loading. Therefore, image-based, subject-specific, multiscale finite-element models were constructed to predict the mechanical responses of the human cervical facet capsular ligament under uniaxial tensile stretch. The models precisely simulated the force–displacement responses for all samples (\(\textit{R}^{2}=0.99\pm 0.01\)) and showed promise in predicting the magnitude and location of peak regional strains at two different displacements. Yet, there was a loss of agreement between the model and experiment in terms of fiber organization at large tissue stretch, possibly due to a lack of accounting for tissue failure. The mean fiber stretch ratio predicted by the models was found to be significantly higher in regions that exhibited anomalous fiber realignment experimentally than in regions with normal realignment (\(\textit{p}<0.002\)). The development of microstructural abnormalities was associated with the predicted fiber-level stretch (\(\textit{p}<0.009\)), but not with the elemental maximum principal stress or maximum principal strain by logistic regression. The multiscale models elucidate a potential mechanical basis for predicting injury-prone tissue domains and for defining the relationships between macroscopic ligament stretch and microscale pathophysiology in the subfailure regime.

Keywords

Biomechanics Facet capsular ligament Cervical spine Multiscale model Polarized light imaging Microstructural injury Fiber-level mechanics 

Notes

Acknowledgements

This work was supported by a Grant from the NIH (U01EB016638), an AMTI Force and Motion Scholarship, and the Catherine Sharpe Foundation. The authors are grateful for Dr. Kyle Quinn for generating the polarized light images, Dr. Edward Sander for early work with establishing image-based multiscale models and Jared Zitnay for assistance with implementing those models. The authors thank the Minnesota Supercomputing Institute at the University of Minnesota for providing resources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. Alavi SH, Ruiz V, Krasieva T et al (2013) Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions. Ann Biomed Eng 41:547–561. doi: 10.1007/s10439-012-0696-z CrossRefGoogle Scholar
  2. Alford PW, Taber LA (2008) Computational study of growth and remodelling in the aortic arch. Comput Methods Biomech Biomed Eng 11:525–38. doi: 10.1080/10255840801930710 CrossRefGoogle Scholar
  3. Ateshian GA, Maas S, Weiss JA (2013) Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J Biomech Eng 135:111001. doi: 10.1115/1.4024823 CrossRefGoogle Scholar
  4. Ban E, Zhang S, Zarei V, Barocas VH, Winkelstein BA, Picu CR (2017) Collagen organization in facet capsular ligaments varies with spinal region and with ligament deformation. J Biomech Eng 139(7):071009. doi: 10.1115/1.4036019
  5. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II-A structural constitutive model. J Biomech Eng 122:327–335CrossRefGoogle Scholar
  6. Breuls RG, Sengers BG, Oomens CW, Bouten CV, Baaijens FP (2002) Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. J Biomech Eng 124(2):198–207. doi: 10.1115/1.1449492 CrossRefGoogle Scholar
  7. Cavanaugh JM, Lu Y, Chen C, Kallakuri S (2006) Pain generation in lumbar and cervical facet joints. J Bone Joint Surg Am 88(Suppl 2):63–67. doi: 10.2106/JBJS.E.01411 Google Scholar
  8. Chandran PL, Barocas VH (2006) Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J Biomech Eng 128(2):259–270. doi: 10.1115/1.2165699 CrossRefGoogle Scholar
  9. Chandran PL, Barocas VH (2007) Deterministic material-based averaging theory model of collagen gel micromechanics. J Biomech Eng 129(2):137–147. doi: 10.1115/1.2472369 CrossRefGoogle Scholar
  10. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7(4):654–669. doi: 10.1038/nprot.2012.009 CrossRefGoogle Scholar
  11. Claeson AA, Yeh Y-J, Black AJ, Akkin T, Barocas VH (2015) Marker-free tracking of facet capsule motion using polarization-sensitive optical coherence tomography. Ann Biomed Eng 43(12):2953–2966. doi: 10.1007/s10439-015-1349-9 CrossRefGoogle Scholar
  12. Crosby ND, Gilliland TM, Winkelstein BA (2014) Early afferent activity from the facet joint after painful trauma to its capsule potentiates neuronal excitability and glutamate signaling in the spinal cord. Pain 155(9):1878–1887. doi: 10.1016/j.pain.2014.06.019 CrossRefGoogle Scholar
  13. Cullen DK, Lessing MC, LaPlaca MC (2007) Collagen-dependent neurite outgrowth and response to dynamic deformation in three-dimensional neuronal cultures. Ann Biomed Eng 35:835–846. doi: 10.1007/s10439-007-9292-z CrossRefGoogle Scholar
  14. Dina OA, Hucho T, Yeh J, Malik-Hall M, Reichling DB, Levine JD (2005) Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia. Pain 115:191–203. doi: 10.1016/j.pain.2005.02.028 CrossRefGoogle Scholar
  15. Dong L, Quindlen JC, Lipschutz DE, Winkelstein BA (2012) Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity. Brain Res 1461:51–63. doi: 10.1016/j.brainres.2012.04.026 CrossRefGoogle Scholar
  16. Dong L, Winkelstein BA (2010) Simulated whiplash modulates expression of the glutamatergic system in the spinal cord suggesting spinal plasticity is associated with painful dynamic cervical facet loading. J Neurotrauma 27(1):163–74. doi: 10.1089/neu.2009.0999 CrossRefGoogle Scholar
  17. Draper NR, Smith H (2014) Applied regression analysis, 3rd edn. Wiley, New YorkMATHGoogle Scholar
  18. Erdemir A, Bennetts C, Davis S, Reddy A, Sibole S (2015) Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow. Interface Focus 5(2):20140081. doi: 10.1098/rsfs.2014.0081 CrossRefGoogle Scholar
  19. Hadi MF, Barocas VH (2013) Microscale fiber network alignment affects macroscale failure behavior in simulated collagen tissue analogs. J Biomech Eng 135(2):021026. doi: 10.1115/1.4023411 CrossRefGoogle Scholar
  20. Hadi MF, Sander EA, Barocas VH (2012) Multiscale model predicts tissue-level failure from collagen fiber-level damage. J Biomech Eng 134(9):091005. doi: 10.1115/1.4007097 CrossRefGoogle Scholar
  21. Iorio JA, Jakoi AM, Singla A (2016) Biomechanics of degenerative spinal disorders. Asian Spine J 10(2):377–384. doi: 10.4184/asj.2016.10.2.377 CrossRefGoogle Scholar
  22. Ita ME, Zhang S, Holsgrove TP, Kartha S, Wineklstein BA (2017) The physiological basis of cervical facet-mediated persistent pain: basic science and clinical challenges. J Orthop Sports Phys Ther 47(7):450–461. doi: 10.2519/jospt.2017.7255 CrossRefGoogle Scholar
  23. Jaumard NV, Welch WC, Winkelstein BA (2011) Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng 133(7):071010. doi: 10.1115/1.4004493 CrossRefGoogle Scholar
  24. Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2:1114–1119. doi: 10.1038/16040 CrossRefGoogle Scholar
  25. Kallakuri S, Li Y, Chen C, Cavanaugh JM (2012) Innervation of cervical ventral facet joint capsule: Histological evidence. World J Orthop 3(2):10–14. doi: 10.5312/wjo.v3.i2.10 CrossRefGoogle Scholar
  26. Khalsa PS, Zhang C, Sommerfeldt D, Hadjiargyrou M (2000) Expression of integrin alpha2beta1 in axons and receptive endings of neurons in rat, hairy skin. Neurosci Lett 293:13–16CrossRefGoogle Scholar
  27. Korenczuk CE, Votava LE, Dhume RY, Kizilski SB, Brown GE, Narain R, Barocas VH (2017) Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues. J Biomech Eng 139(7):071008. doi: 10.1115/1.4036316
  28. Lee KE, Davis MB, Mejilla RM, Winkelstein BA (2004) In vivo cervical facet capsule distraction: mechanical implications for whiplash and neck pain. Stapp Car Crash J 48:373–395Google Scholar
  29. Lee KE, Davis MB, Winkelstein BA (2008) Capsular ligament involvement in the development of mechanical hyperalgesia after facet joint loading: behavioral and inflammatory outcomes in a rodent model of pain. J Neurotrauma 25(11):1383–1393. doi: 10.1089/neu.2008.0700 CrossRefGoogle Scholar
  30. Liao H, Belkoff SM (1999) A failure model for ligaments. J Biomech 32(2):183–188. doi: 10.1016/S0021-9290(98)00169-9 CrossRefGoogle Scholar
  31. Lord SM, Barnsley L, Wallis BJ, Bogduk N (1996) Chronic cervical zygapophysial joint pain after whiplash. A placebo-controlled prevalence study. Spine (Phila Pa 1976) 21(15):1737–1744 discussion 1744–1745CrossRefGoogle Scholar
  32. Lu Y, Chen C, Kallakuri S, Patwardhan A, Cavanaugh JM (2005) Neurophysiological and biomechanical characterization of goat cervical facet joint capsules. J Orthop Res 23(4):779–787. doi: 10.1016/j.orthres.2005.01.002 CrossRefGoogle Scholar
  33. Morgan FR, Mitton RL (1960) Mechanical properties of raw collagen fibres. J Soc Leather Trades Chem 44:2Google Scholar
  34. Panjabi MM, Cholewicki J, Nibu K, Grauer J, Vahldiek M (1998) Capsular ligament stretches during in vitro whiplash simulations. J Spinal Disord 11(3):227–32CrossRefGoogle Scholar
  35. Park BH, de Boer JF (2008) Polarization-sensitive optical coherence tomography. Springer, BerlinCrossRefGoogle Scholar
  36. Provenzano PP, Heisey D, Hayashi K, Lakes R, Vanderby R Jr (2002) Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol 92(1):362–371CrossRefGoogle Scholar
  37. Provenzano PP, Vanderby R (2006) Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25(2):71–84. doi: 10.1016/j.matbio.2005.09.005 CrossRefGoogle Scholar
  38. Quinn KP, Winkelstein BA (2008) Altered collagen fiber kinematics define the onset of localized ligament damage during loading. J Appl Physiol 105(6):1881–1888. doi: 10.1152/japplphysiol.90792.2008 CrossRefGoogle Scholar
  39. Quinn KP, Winkelstein BA (2009) Vector correlation technique for pixel-wise detection of collagen fiber realignment during injurious tensile loading. J Biomed Opt 14(5):054010. doi: 10.1117/1.3227037 CrossRefGoogle Scholar
  40. Quinn KP, Winkelstein BA (2010) Full field strain measurements of collagenous tissue by tracking fiber alignment through vector correlation. J Biomech 43(13):2637–2640. doi: 10.1016/j.jbiomech.2010.05.008 CrossRefGoogle Scholar
  41. Quinn KP, Lee KE, Ahaghotu CC, Winkelstein BA (2007) Structural changes in the cervical facet capsular ligament: potential contributions to pain following subfailure loading. Stapp Car Crash J 51:169–187Google Scholar
  42. Quinn KP, Bauman JA, Crosby ND, Winkelstein BA (2010) Anomalous fiber realignment during tensile loading of the rat facet capsular ligament identifies mechanically induced damage and physiological dysfunction. J Biomech 43(10):1870–1875. doi: 10.1016/j.jbiomech.2010.03.032 CrossRefGoogle Scholar
  43. Raghupathy R, Witzenburg C, Lake SP, Sander EA, Barocas VH (2011) Identification of regional mechanical anisotropy in soft tissue analogs. J Biomech Eng 133(9):091011. doi: 10.1115/1.4005170 CrossRefGoogle Scholar
  44. Robinson PS, Tranquillo RT (2009) Planar Biaxial Behavior of Fibrin-Based Tissue-Engineered Heart Valve Leaflets. Tissue Eng Part A 15(10):2763–2772. doi: 10.1089/ten.tea.2008.0426 CrossRefGoogle Scholar
  45. Sander EA, Stylianopoulos T, Tranquillo RT, Barocas VH (2009a) Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc Natl Acad Sci USA 106(42):17675–17680. doi: 10.1073/pnas.0903716106 CrossRefGoogle Scholar
  46. Sander EA, Tranquillo RT, Barocas VH (2009) Image-based multiscale structural models of fibrous engineered tissues. Conf Proc IEEE Eng Med Biol Soc 2009:4270–4272. doi: 10.1109/IEMBS.2009.5334586 Google Scholar
  47. Siegmund GP, Myers BS, Davis MB, Bohnet HF, Winkelstein BA (2001) Mechanical evidence of cervical facet capsule injury during whiplash: a cadaveric study using combined shear, compression, and extension loading. Spine (Phila Pa 1976) 26(19):2095–2101CrossRefGoogle Scholar
  48. Thunes JR, Pal S, Fortunato RN, Phillippi JA, Gleason TG, Vorp DA, Maiti S (2016) A structural finite element model for lamellar unit of aortic media indicates heterogeneous stress field after collagen recruitment. J Biomech 49(9):1562–1569. doi: 10.1016/j.jbiomech.2016.03.034 CrossRefGoogle Scholar
  49. Tomaselli KJ, Doherty P, Emmett CJ et al (1993) Expression of beta 1 integrins in sensory neurons of the dorsal root ganglion and their functions in neurite outgrowth on two laminin isoforms. J Neurosci 13:4880–4888Google Scholar
  50. Tower TT, Neidert MR, Tranquillo RT (2002) Fiber alignment imaging during mechanical testing of soft tissues. Ann Biomed Eng 30(10):1221–1233. doi: 10.1114/1.1527047 CrossRefGoogle Scholar
  51. Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PLoS One 4(6):e5902. doi: 10.1371/journal.pone.0005902 CrossRefGoogle Scholar
  52. Vanderheiden SM, Hadi MF, Barocas VH (2015) Crack propagation versus fiber alignment in collagen gels: experiments and multiscale simulation. J Biomech Eng 137(12):121002. doi: 10.1115/1.4031570 CrossRefGoogle Scholar
  53. Voycheck CA, Luu K, McMahon PJ, Debski RE (2014) Collagen fiber alignment and maximum principal strain in the glenohumeral capsule predict location of failure during uniaxial extension. Biomech Model Mechanobiol 13(2):379–385. doi: 10.1007/s10237-013-0503-2 CrossRefGoogle Scholar
  54. Weinberg EJ, Shahmirzadi D, Mofrad MR (2010) On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 9(4):373–387. doi: 10.1007/s10237-009-0181-2 CrossRefGoogle Scholar
  55. Winkelstein BA, Nightingale RW, Richardson WJ, Myers BS (2000) The cervical facet capsule and its role in whiplash injury: a biomechanical investigation. Spine (Phila Pa 1976) 25(10):1238–1246CrossRefGoogle Scholar
  56. Witzenburg CM, Dhume RY, Shah SB, Korenczuk CE, Wagner HP, Alford PW, Barocas VH (2017) Failure of the porcine ascending aorta: multidirectional experiments and a unifying microstructural model. J Biomech Eng 139(3):031005. doi: 10.1115/1.4035264 CrossRefGoogle Scholar
  57. Yahia LH, Garzon S (1993) Structure on the capsular ligaments of the facet joints. Ann Anat 175(2):185–188. doi: 10.1016/S0940-9602(11)80179-2 CrossRefGoogle Scholar
  58. Yamamoto E, Hayashi K, Yamamoto N (1999) Mechanical properties of collagen fascicles from the rabbit patellar tendon. J Biomech Eng 121(1):124–131CrossRefGoogle Scholar
  59. Yamashita T, Minaki Y, Ozaktay AC, Cavanaugh JM, King AI (1996) A morphological study of the fibrous capsule of the human lumbar facet joint. Spine (Phila Pa 1976) 21(5):538–543CrossRefGoogle Scholar
  60. Zarei V, Liu CJ, Claeson AA, Akkin T, Barocas VH (2017) Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament. Biomech Model Mechanobiol, 1–14. doi: 10.1007/s10237-017-0896-4
  61. Zhang S, Cao X, Stablow AM, Shenoy VB, Winkelstein BA (2016) Tissue strain reorganizes collagen with a switchlike response that regulates neuronal extracellular signal-regulated kinase phosphorylation in vitro: implications for ligamentous injury and mechanotransduction. J Biomech Eng 138(2):021013. doi: 10.1115/1.4031975 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sijia Zhang
    • 1
  • Vahhab Zarei
    • 2
  • Beth A. Winkelstein
    • 1
    • 3
  • Victor H. Barocas
    • 4
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Mechanical EngineeringUniversity of Minnesota – Twin CitiesMinneapolisUSA
  3. 3.Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Biomedical EngineeringUniversity of Minnesota – Twin CitiesMinneapolisUSA

Personalised recommendations