Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 1, pp 111–131 | Cite as

An in silico biomechanical analysis of the stent–esophagus interaction

  • Mathias Peirlinck
  • Nic Debusschere
  • Francesco Iannaccone
  • Peter D. Siersema
  • Benedict Verhegghe
  • Patrick Segers
  • Matthieu De Beule
Original Paper

Abstract

Despite all technological innovations in esophageal stent design over the past 20 years, the association between the stent design’s mechanical behavior and its effect on the clinical outcome has not yet been thoroughly explored. A parametric numerical model of a commercially available esophageal bioresorbable polymeric braided wire stent is set up, accounting for stent design aspects such as braiding angle, strut material, wire thickness, degradation and friction between the wires comprising a predictive tool on the device’s mechanical behavior. Combining this tool with complex multilayered numerical models of the pathological in vivo stressed, actively contracting and buckling esophagus could provide clinicians and engineers with a patient-specific window into the mechanical aspects of stent-based esophageal intervention. This study integrates device and soft tissue mechanics in one computational framework to potentially aid in the understanding of the occurrence of specific symptoms and complications after stent placement.

Keywords

Bioresorbable stent Polymeric braided wire stent Virtual implantation Esophageal stenting Esophageal modeling Finite element analysis Constitutive modeling Active muscle contraction Patient-specific Zero-stress state Buckling Peristalsis 

Notes

Acknowledgements

The authors gratefully acknowledge Peter Dubruel, Ph.D., David De Wilde, Ph.D., and Wouter Kappelle, MD, for their valuable support and assistance. We also thank MPT Europe for giving us access to the radial stent compression unit, which greatly assisted the mechanical characterization of the studied stent samples. This research was supported by the Flanders Innovation & Entrepreneurship Agency, strategic basic research Grant No.141014.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10237_2017_948_MOESM1_ESM.mp4 (7 mb)
Supplementary material 1 (mp4 7189 KB)

References

  1. Antoniadis AP et al (2015) Biomechanical modeling to improve coronary artery bifurcation stenting expert review document on techniques and clinical implementation. JACC Cardiovasc Interv 8(10):1281–1296. doi: 10.1016/j.jcin.2015.06.015 CrossRefGoogle Scholar
  2. Auricchio F, Constantinescu A, Conti M, Scalet G (2015) A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. Int J Fatigue 75:69–79CrossRefGoogle Scholar
  3. Auricchio F, Constantinescu A, Conti M, Scalet G (2016) Fatigue of metallic stents: from clinical evidence to computational analysis. Ann Biomed Eng 44:287–301CrossRefGoogle Scholar
  4. Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B (2011) Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 33:281–289CrossRefGoogle Scholar
  5. Chiastra C et al (2016) Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: from OCT and CT imaging to structural and hemodynamics analyses. J Biomech 49:2102–2111. doi: 10.1016/j.jbiomech.2015.11.024 CrossRefGoogle Scholar
  6. Simulia Corp. (2014) Abaqus Documentation — version 6.14. Dassault Systèmes Simulia Corp. Software ManualsGoogle Scholar
  7. De Beule M (2008) Finite element stent design. Dissertation, Ghent UniversityGoogle Scholar
  8. De Beule M, Van Cauter S, Mortier P, Van Loo D, Van Impe R, Verdonck P, Verhegghe B (2009) Virtual optimization of self-expandable braided wire stents. Med Eng Phys 31:448–453. doi: 10.1016/j.medengphy.2008.11.008 CrossRefGoogle Scholar
  9. De Bock S, Iannaccone F, De Santis G, De Beule M, Mortier P, Verhegghe B, Segers P (2012) Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 45:1353–1359. doi: 10.1016/j.jbiomech.2012.03.012 CrossRefGoogle Scholar
  10. De Bock S et al (2012) Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J Mech Behav Biomed 13:129–139. doi: 10.1016/j.jmbbm.2012.04.021 CrossRefGoogle Scholar
  11. de Jaegere P et al (2016) Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv 9:508–512. doi: 10.1016/j.jcin.2016.01.003 CrossRefGoogle Scholar
  12. De Putter S, Wolters B, Rutten M, Breeuwer M, Gerritsen F, Van de Vosse F (2007) Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J Biomech 40:1081–1090CrossRefGoogle Scholar
  13. De Santis G et al (2013) Haemodynamic impact of stent-vessel (mal)apposition following carotid artery stenting: mind the gaps!. Comput Methods Biomech Biomed Eng 16:648–659. doi: 10.1080/10255842.2011.629997 CrossRefGoogle Scholar
  14. Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M (2015) A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J Biomech 48:2012–2018CrossRefGoogle Scholar
  15. Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M (2016) A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Ann Biomed Eng 44:382–390CrossRefGoogle Scholar
  16. Famaey N, Vander Sloten J, Kuhl E (2013) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanobiol 12:123–136. doi: 10.1007/s10237-012-0386-7 CrossRefGoogle Scholar
  17. Fan Y, Gregersen H, Kassab GS (2004) A two-layered mechanical model of the rat esophagus. Experiment and theory. Biomed Eng Online 3:40CrossRefGoogle Scholar
  18. Fung Y-C (1970) Mathematical representation of the mechanical properties of the heart muscle. J Biomech 3:381–404CrossRefGoogle Scholar
  19. Fung Y (1993) Biomechanics: material properties of living tissues. Springer, New YorkCrossRefGoogle Scholar
  20. Gasser TC (2016) Biomechanical rupture risk assessment: a consistent and objective decision-making tool for abdominal aortic aneurysm patients. AORTA J 4:42Google Scholar
  21. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35CrossRefGoogle Scholar
  22. Gregersen H (2003) Biomechanics of the gastrointestinal tract: new perspectives in motility research and diagnostics. Springer, New YorkCrossRefGoogle Scholar
  23. Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil 8:277–297CrossRefGoogle Scholar
  24. Gregersen H, Kassab GS, Fung YC (2000) The zero-stress state of the gastrointestinal tract: biomechanical and functional implications. Dig Dis Sci 45:2271–2281CrossRefGoogle Scholar
  25. Gregersen H, Pedersen J, Drewes AM (2008) Deterioration of muscle function in the human esophagus with age. Dig Dis Sci 53:3065–3070CrossRefGoogle Scholar
  26. Grogan JA, Leen SB, McHugh PE (2013) Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34:8049–8060. doi: 10.1016/j.biomaterials.2013.07.010 CrossRefGoogle Scholar
  27. Hall GJ, Kasper EP (2006) Comparison of element technologies for modeling stent expansion. J Biomech Eng 128:751–756. doi: 10.1115/1.2264382 CrossRefGoogle Scholar
  28. Hill AV (1970) First and last experiments in muscle mechanics. Cambridge University Press, CambridgeGoogle Scholar
  29. Hirdes MM, Vleggaar FP, de Beule M, Siersema PD (2013) In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Endoscopy 45:997–1005. doi: 10.1055/s-0033-1344985 CrossRefGoogle Scholar
  30. Hirdes MM, Vleggaar FP, Siersema PD (2011) Stent placement for esophageal strictures: an update. Expert Rev Med Devices 8:733–755. doi: 10.1586/erd.11.44 CrossRefGoogle Scholar
  31. Huxley A (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255Google Scholar
  32. Iannaccone F et al (2014) The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. J Biomech 47:890–898. doi: 10.1016/j.jbiomech.2014.01.008 CrossRefGoogle Scholar
  33. Isayama H et al (2009) Measurement of radial and axial forces of biliary self-expandable metallic stents. Gastrointest Endosc 70:37–44. doi: 10.1016/j.gie.2008.09.032 CrossRefGoogle Scholar
  34. Jedwab MR, Clerc CO (1993) A study of the geometrical and mechanical properties of a self-expanding metallic stent-theory and experiment. J Appl Biomater 4:77–85. doi: 10.1002/jab.770040111 CrossRefGoogle Scholar
  35. Kajzer W, Kaczmarek M, Marciniak J (2005) Biomechanical analysis of stent-oesophagus system. J Mater Process Technol 162:196–202CrossRefGoogle Scholar
  36. Kim JH, Kang TJ, Yu W-R (2008) Mechanical modeling of self-expandable stent fabricated using braiding technology. J Biomech 41:3202–3212CrossRefGoogle Scholar
  37. Kou W, Bhalla APS, Griffith BE, Pandolfino JE, Kahrilas PJ, Patankar NA (2015) A fully resolved active musculo-mechanical model for esophageal transport. arXiv preprint arXiv:1501.02010
  38. Kuo B, Urma D (2006) Esophagus-anatomy and development. GI Motil onlineGoogle Scholar
  39. Li G et al (2013) Biodegradable weft-knitted intestinal stents: fabrication and physical changes investigation in vitro degradation. J Biomed Mater Res A. doi: 10.1002/jbm.a.34759 Google Scholar
  40. Li M, Brasseur JG (1993) Non-steady peristaltic transport in finite-length tubes. J Fluid Mech 248:129–151CrossRefMATHGoogle Scholar
  41. Liao D, Fan Y, Zeng Y, Gregersen H (2003) Stress distribution in the layered wall of the rat oesophagus. Med Eng Phys 25:731–738CrossRefGoogle Scholar
  42. Liao D, Lelic D, Gao F, Drewes AM, Gregersen H (2008) Biomechanical functional and sensory modelling of the gastrointestinal tract. Philos Trans A Math Phys Eng Sci 366:3281–3299. doi: 10.1098/rsta.2008.0091 CrossRefGoogle Scholar
  43. Liao D, Zhao J, Fan Y, Gregersen H (2004) Two-layered quasi-3D finite element model of the oesophagus. Med Eng Phys 26:535–543. doi: 10.1016/j.medengphy.2004.04.009 CrossRefGoogle Scholar
  44. Liao D, Zhao J, Yang J, Gregersen H (2007) The oesophageal zero-stress state and mucosal folding from a GIOME perspective. World J Gastroenterol 13:1347–1351CrossRefGoogle Scholar
  45. Liao DH, Zhao JB, Gregersen H (2009) Gastrointestinal tract modelling in health and disease. World J Gastroenterol 15:169–176CrossRefGoogle Scholar
  46. Miller LS et al (1995) Correlation of high-frequency esophageal ultrasonography and manometry in the study of esophageal motility. Gastroenterology 109:832–837CrossRefGoogle Scholar
  47. Mittal RK, Padda B, Bhalla V, Bhargava V, Liu J (2006) Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am J Physiol Gastrointest Liver Physiol 290:G431–G438CrossRefGoogle Scholar
  48. Molony DS, Kavanagh EG, Madhavan P, Walsh MT, McGloughlin TM (2010) A computational study of the magnitude and direction of migration forces in patient-specific abdominal aortic aneurysm stent-grafts. Eur J Vasc Endovasc Surg 40:332–339. doi: 10.1016/j.ejvs.2010.06.001 CrossRefGoogle Scholar
  49. Murtada S-I, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9:749–762CrossRefGoogle Scholar
  50. Murtada S-I, Lewin S, Arner A, Humphrey J (2016) Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading. Biomech Model Mechanobiol 15:579–592CrossRefGoogle Scholar
  51. Natali AN, Carniel EL, Gregersen H (2009) Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med Eng Phys 31:1056–1062CrossRefGoogle Scholar
  52. Nicosia MA, Brasseur JG, Liu J-B, Miller LS (2001) Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol 281:G1022–G1033CrossRefGoogle Scholar
  53. Nuutinen JP, Clerc C, Tormala P (2003a) Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J Biomater Sci Polym Ed 14:677–687CrossRefGoogle Scholar
  54. Nuutinen JP, Clerc C, Tormala P (2003b) Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J Biomat Sci Polym Ed 14:677–687. doi: 10.1163/156856203322274932 CrossRefGoogle Scholar
  55. Peirlinck M (2013) Design of biodegradable esophageal stents. Master thesis, Ghent UniversityGoogle Scholar
  56. Pouderoux P, Lin S, Kahrilas PJ (1997) Timing, propagation, coordination, and effect of esophageal shortening during peristalsis. Gastroenterology 112:1147–1154CrossRefGoogle Scholar
  57. Puckett J, Bhalla V, Liu J, Kassab G, Mittal R (2005) Oesophageal wall stress and muscle hypertrophy in high amplitude oesophageal contractions. Neurogastroenterol Motil 17:791–799CrossRefGoogle Scholar
  58. Schultz C et al (2016) Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the medtronic CoreValve and the Edwards SAPIEN valve. EuroIntervention 11:1044–1052CrossRefGoogle Scholar
  59. Shanahan C, Tofail SA, Tiernan P (2017) Viscoelastic braided stent: finite element modelling and validation of crimping behaviour. Mater Des 121:143–153CrossRefGoogle Scholar
  60. Sharma P, Kozarek R, Practice Parameters Committee of American College of G (2010) Role of esophageal stents in benign and malignant diseases. Am J Gastroenterol 105:258–273. doi: 10.1038/ajg.2009.684 (quiz 274)
  61. Simulia Corp (2014) Abaqus Documentation—version 6.14. Dassault Systèmes Simulia Corp. Software ManualsGoogle Scholar
  62. Sokolis DP (2010) Strain-energy function and three-dimensional stress distribution in esophageal biomechanics. J Biomech 43:2753–2764. doi: 10.1016/j.jbiomech.2010.06.007 CrossRefGoogle Scholar
  63. Sokolis DP (2013) Structurally-motivated characterization of the passive pseudo-elastic response of esophagus and its layers. Comput Biol Med 43:1273–1285. doi: 10.1016/j.compbiomed.2013.06.009 CrossRefGoogle Scholar
  64. Sommer G, Schriefl A, Zeindlinger G, Katzensteiner A, Ainodhofer H, Saxena A, Holzapfel GA (2013) Multiaxial mechanical response and constitutive modeling of esophageal tissues: impact on esophageal tissue engineering. Acta Biomater 9:9379–9391. doi: 10.1016/j.actbio.2013.07.041 CrossRefGoogle Scholar
  65. Stavropoulou EA, Dafalias YF, Sokolis DP (2009) Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling. J Biomech 42:2654–2663. doi: 10.1016/j.jbiomech.2009.08.018 CrossRefGoogle Scholar
  66. Uitdehaag MJ, Siersema PD, Spaander MC, Vleggaar FP, Verschuur EM, Steyerberg EW, Kuipers EJ (2010) A new fully covered stent with antimigration properties for the palliation of malignant dysphagia: a prospective cohort study. Gastrointest Endosc 71:600–605. doi: 10.1016/j.gie.2009.09.023 CrossRefGoogle Scholar
  67. Villadsen G, Storkholm J, Zachariae H, Hendel L, Bendtsen F, Gregersen H (2001) Oesophageal pressure–cross sectional area distributions and secondary peristalsis in relation to subclassification of systemic sclerosis. Neurogastroenterol Motil 13:199–210CrossRefGoogle Scholar
  68. Walter D et al (2015) A randomized trial comparing biodegradable stent placement and endoscopic dilation for recurrent benign esophageal strictures (Destiny study). United Eur Gastroenterol J 3:A24. doi: 10.1177/2050640615610034 Google Scholar
  69. Yang J, Zhao J, Liao D, Gregersen H (2006a) Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes. J Biomech 39:894–904CrossRefGoogle Scholar
  70. Yang W, Fung T, Chian K, Chong C (2006b) 3D Mechanical properties of the layered esophagus: experiment and constitutive model. J Biomech Eng 128:899–908CrossRefGoogle Scholar
  71. Yang W, Fung TC, Chian KS, Chong CK (2006c) Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model. J Biomech Eng 128:409–418. doi: 10.1115/1.2187033 CrossRefGoogle Scholar
  72. Yang W, Fung TC, Chian KS, Chong CK (2006d) Viscoelasticity of esophageal tissue and application of a QLV model. J Biomech Eng 128:909–916. doi: 10.1115/1.2372473 CrossRefGoogle Scholar
  73. Yang W, Fung TC, Chian KS, Chong CK (2007a) Finite element simulation of food transport through the esophageal body. World J Gastroenterol 13:1352–1359CrossRefGoogle Scholar
  74. Yang W, Fung TC, Chian KS, Chong CK (2007b) Instability of the two-layered thick-walled esophageal model under the external pressure and circular outer boundary condition. J Biomech 40:481–490. doi: 10.1016/j.jbiomech.2006.02.020
  75. Yang W, Fung TC, Chian KS, Chong CK (2007c) Three-dimensional finite element model of the two-layered oesophagus, including the effects of residual strains and buckling of mucosa. Proc Inst Mech Eng H 221:417–426CrossRefGoogle Scholar
  76. Zhao S, Liu XC, Gu L (2012) The impact of wire stent fabrication technique on the performance of stent placement. J Med Devices 6:011007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Biofluid, Tissue and Solid Mechanics for Medical Applications Lab (IBiTech, bioMMeda)Ghent UniversityGentBelgium
  2. 2.Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenThe Netherlands
  3. 3.FEops nvGentBelgium

Personalised recommendations