Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 1, pp 103–109 | Cite as

Vesicle adhesion reveals novel universal relationships for biophysical characterization

  • Ehsan Irajizad
  • Ashutosh Agrawal
Original Article

Abstract

Adhesion plays an integral role in diverse biological functions ranging from cellular transport to tissue development. Estimation of adhesion strength, therefore, becomes important to gain biophysical insight into these phenomena. In this study, we use curvature elasticity to present non-intuitive, yet remarkably simple, universal relationships that capture vesicle–substrate interactions. These relationships not only provide efficient strategies to tease out adhesion energy of biological molecules but can also be used to characterize the physical properties of elastic biomimetic nanoparticles. We validate the modeling predictions with experimental data from two previous studies.

Keywords

Lipid membranes Vesicle adhesion Adhesion energy Nanoparticle stiffness 

Notes

Acknowledgements

This study was funded by NSF Grants CMMI 1437330 and CMMI 1562043.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Agrawal A (2011) Mechanics of membrane–membrane adhesion. Math Mech Solids 16(8):872. doi: 10.1177/1081286511401364 MathSciNetCrossRefMATHGoogle Scholar
  2. Agrawal A, Steigmann DJ (2009) Boundary-value problems in the theory of lipid membranes. Contin Mech Thermodyn 21(1):57. doi: 10.1007/s00161-009-0102-8 MathSciNetCrossRefMATHGoogle Scholar
  3. Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4(11):2868CrossRefGoogle Scholar
  4. Albersdorfer A, Feder T, Sackmann E (1997) Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J 73(1):245. doi: 10.1016/S0006-3495(97)78065-2 CrossRefGoogle Scholar
  5. Alberts B (2008) Molecular biology of the cell, vol 1. Garland Science, New YorkGoogle Scholar
  6. Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, Mitragotri S (2015) Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9(3):3169CrossRefGoogle Scholar
  7. Aplin A, Howe A, Alahari S, Juliano R (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50(2):197Google Scholar
  8. Benson DL, Schnapp LM, Shapiro L, Huntley GW (2000) Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell Biol 10(11):473CrossRefGoogle Scholar
  9. Bernard AL, Guedeau-Boudeville MA, Jullien L, Di Meglio JM (2000) Strong adhesion of giant vesicles on surfaces: dynamics and permeability. Langmuir 16(17):6809CrossRefGoogle Scholar
  10. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1):61IN777CrossRefGoogle Scholar
  11. Capovilla R, Guven J (2002) Geometry of lipid vesicle adhesion. Phys Rev E Stat Nonlinear Soft Matter Phys 66(4):1. doi: 10.1103/PhysRevE.66.041604 CrossRefGoogle Scholar
  12. Cheng QH, Liu P, Gao HJ, Zhang YW (2009) A computational modeling for micropipette-manipulated cell detachment from a substrate mediated by receptor–ligand binding. J Mech Phys Solids 57(2):205. doi: 10.1016/j.jmps.2008.11.003 CrossRefGoogle Scholar
  13. Cuvelier D, Nassoy P (2004) Hidden dynamics of vesicle adhesion induced by specific stickers. Phys Rev Lett 93(22):1. doi: 10.1103/PhysRevLett.93.228101 CrossRefGoogle Scholar
  14. Das S, Du Q (2008) Adhesion of vesicles to curved substrates. Phys Rev E 77(1):011907CrossRefGoogle Scholar
  15. Decuzzi P, Ferrari M (2008) Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29(3):377CrossRefGoogle Scholar
  16. Deserno M (2015) Fluid lipid membranes: from differential geometry to curvature stresses. Chem Phys Lipids 185:11CrossRefGoogle Scholar
  17. Deserno M, Müller MM, Guven J (2007) Contact lines for fluid surface adhesion. Phys Rev E 76(1):011605CrossRefGoogle Scholar
  18. Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci 106(51):21495CrossRefGoogle Scholar
  19. Edelman GM (1983) Cell adhesion molecules. Science 219(4584):450CrossRefGoogle Scholar
  20. Evans EA (1980) Analysis of adhesion of large vesicles to surfaces. Biophys J 31(3):425. doi: 10.1016/S0006-3495(80)85069-7 CrossRefGoogle Scholar
  21. Fenz SF, Smith AS, Merkel R, Sengupta K (2011) Switching from ultraweak to strong adhesion. Soft Matter 7(3):952. doi: 10.1039/C0sm00550a CrossRefGoogle Scholar
  22. Freund LB (2009) Characterizing the resistance generated by a molecular bond as it is forcibly separated. Math Mech Solids 14(1–2):148. doi: 10.1177/1081286508092608 MathSciNetCrossRefGoogle Scholar
  23. Freund LB, Lin Y (2004) The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion. J Mech Phys Solids 52(11):2455. doi: 10.1016/j.jmps.2004.05.004 CrossRefMATHGoogle Scholar
  24. Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715):679CrossRefGoogle Scholar
  25. Gruhn T, Franke T, Dimova R, Lipowsky R (2007) Novel method for measuring the adhesion energy of vesicles. Langmuir 23(10):5423. doi: 10.1021/la063123r CrossRefGoogle Scholar
  26. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345CrossRefGoogle Scholar
  27. Guttenberg Z, Bausch AR, Hu B, Bruinsma R, Moroder L, Sackmann E (2000) Measuring ligand–receptor unbinding forces with magnetic beads: molecular leverage. Langmuir 16(23):8984. doi: 10.1021/la000279x CrossRefGoogle Scholar
  28. Guttenberg Z, Lorz B, Sackmann E, Boulbitch A (2001) First-order transition between adhesion states in a system mimicking cell–tissue interaction. Europhys Lett (EPL) 54(6):826. doi: 10.1209/epl/i2001-00328-9 CrossRefGoogle Scholar
  29. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12):693Google Scholar
  30. Hu CMJ, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV et al (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571):118CrossRefGoogle Scholar
  31. Huttenlocher A, Sandborg RR, Horwitz AF (1995) Adhesion in cell migration. Curr Opin Cell Biol 7(5):697CrossRefGoogle Scholar
  32. Jenkins JT (1977) The equations of mechanical equilibrium of a model membrane. SIAM J Appl Math 32(4):755MathSciNetCrossRefMATHGoogle Scholar
  33. Juliano R (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Ann Rev Pharmacol Toxicol 42(1):283CrossRefGoogle Scholar
  34. Lai ACK, Wan KT, Chan V (2002) Substrate-induced deformation and adhesion of phospholipid vesicles at the main phase transition. Biophys Chem 99(3):245. doi: 10.1016/S0301-4622(02)00201-6 CrossRefGoogle Scholar
  35. Lin Y, Freund L (2007) Forced detachment of a vesicle in adhesive contact with a substrate. Int J Solids Struct 44(6):1927CrossRefMATHGoogle Scholar
  36. Lipowsky R, Seifert U (1991) Adhesion of vesicles and membranes. Mol Cryst Liq Cryst 202(1):17. doi: 10.1080/00268949108035656 CrossRefGoogle Scholar
  37. Lorz BG, Smith AS, Gege C, Sackmann E (2007) Adhesion of giant vesicles mediated by weak binding of sialyl-LewisX to E-selectin in the presence of repelling poly (ethylene glycol) molecules. Langmuir 23(24):12293. doi: 10.1021/la701824q CrossRefGoogle Scholar
  38. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8(1):15CrossRefGoogle Scholar
  39. Prechtel K, Bausch AR, Marchi-Artzner V, Kantlehner M, Kessler H, Merkel R (2002) Dynamic force spectroscopy to probe adhesion strength of living cells. Phys Rev Lett 89(2):028101. doi: 10.1103/PhysRevLett.89.028101 CrossRefGoogle Scholar
  40. Reister-Gottfried E, Sengupta K, Lorz B, Sackmann E, Seifert U, Smith AS (2008) Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. Phys Rev Lett 101(20):1. doi: 10.1103/PhysRevLett.101.208103 CrossRefGoogle Scholar
  41. Rosso R, Virga EG (1998) Adhesion by curvature of lipid tubules. Continuum Mech Thermodyn 10:359MathSciNetCrossRefMATHGoogle Scholar
  42. Rutishauser U, Jessell T (1988) Cell adhesion molecules in vertebrate neural development. Physiol Rev 68(3):819CrossRefGoogle Scholar
  43. Sackmann E, Smith AS (2014) Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter 10(11):1644. doi: 10.1039/c3sm51910d CrossRefGoogle Scholar
  44. Seifert U (1991) Adhesion of vesicles in two dimensions. Phys Rev A 43(12):6803. doi: 10.1103/PhysRevA.43.6803 MathSciNetCrossRefGoogle Scholar
  45. Seifert U, Lipowsky R (1990) Adhesion of vesicles. Phys Rev A 42(8):4768. doi: 10.1103/PhysRevA.42.4768 CrossRefGoogle Scholar
  46. Sen S, Subramanian S, Discher DE (2005) Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89(5):3203. doi: 10.1529/biophysj.105.063826 CrossRefGoogle Scholar
  47. Sengupta K, Limozin L (2010) Adhesion of soft membranes controlled by tension and interfacial polymers. Phys Rev Lett 104(8):2. doi: 10.1103/PhysRevLett.104.088101 CrossRefGoogle Scholar
  48. Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor Notes 2000:1Google Scholar
  49. Shenoy VB, Freund LB (2005) Growth and shape stability of a biological membrane adhesion complex in the diffusion-mediated regime. Proc Natl Acad Sci USA 102(9):3213. doi: 10.1073/pnas.0500368102 CrossRefGoogle Scholar
  50. Shi W, Feng XQ, Gao H (2006) Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech Sin 22(6):529CrossRefMATHGoogle Scholar
  51. Smith AS, Sackmann E (2009) Progress in mimetic studies of cell adhesion and the mechanosensing. ChemPhysChem 10(1):66. doi: 10.1002/cphc.200800683 CrossRefGoogle Scholar
  52. Smith AS, Seifert U (2005) Effective adhesion strength of specifically bound vesicles. Phys Rev E Stat Nonlinear Soft Matter Phys 71(6):1. doi: 10.1103/PhysRevE.71.061902 CrossRefGoogle Scholar
  53. Smith AS, Seifert U (2007) Vesicles as a model for controlled (de-)adhesion of cells: a thermodynamic approach. Soft Matter 3(3):275. doi: 10.1039/b611892e CrossRefGoogle Scholar
  54. Smith AS, Sackmann E, Seifert U (2004) Pulling tethers from adhered vesicles. Phys Rev Lett 92(20):208101. doi: 10.1103/PhysRevLett.92.208101 CrossRefGoogle Scholar
  55. Smith AS, Lorz BG, Goennenwein S, Sackmann E (2006) Antagonist-induced deadhesion of specifically adhered vesicles. Biophys J 90(7):L52. doi: 10.1529/biophysj.105.079426 CrossRefGoogle Scholar
  56. Smith AS, Sackmann E, Seifert U (2007) Effects of a pulling force on the shape of a bound vesicle. Europhys Lett (EPL) 64(2):281. doi: 10.1209/epl/i2003-00499-9 CrossRefGoogle Scholar
  57. Smith AS, Sengupta K, Goennenwein S, Seifert U, Sackmann E (2008) Force-induced growth of adhesion domains is controlled by receptor mobility. Proc Natl Acad Sci USA 105(19):6906. doi: 10.1073/pnas.0801706105 CrossRefGoogle Scholar
  58. Steigmann DJ (1999) Fluid films with curvature elasticity. Arch Ration Mech Anal 150(2):127. doi: 10.1007/s002050050183 MathSciNetCrossRefMATHGoogle Scholar
  59. Ursell T. Stretching the definition of a lipid bilayer: elasticity role in protein and lipid organization. Ph.D. thesis, Caltech, CaltechETD:etd-06062009-131454 (2009)Google Scholar
  60. Weikl TR, Asfaw M, Krobath H, Róycki B, Lipowsky R (2009) Adhesion of membranes via receptor ligand complexes: domain formation, binding cooperativity, and active processes. Soft Matter 5(17):3213. doi: 10.1039/b902017a CrossRefGoogle Scholar
  61. Yi X, Shi X, Gao H (2011) Cellular uptake of elastic nanoparticles. Phys Rev Lett 107(9):098101. doi: 10.1103/PhysRevLett.107.098101 CrossRefGoogle Scholar
  62. Yoo JW, Mitragotri S (2010) Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci 107(25):11205CrossRefGoogle Scholar
  63. Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10(7):521CrossRefGoogle Scholar
  64. Yuan H, Li J, Bao G, Zhang S (2010) Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 105(13):138101CrossRefGoogle Scholar
  65. Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9):8655CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations