Skip to main content
Log in

Vesicle adhesion reveals novel universal relationships for biophysical characterization

  • Original Article
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Adhesion plays an integral role in diverse biological functions ranging from cellular transport to tissue development. Estimation of adhesion strength, therefore, becomes important to gain biophysical insight into these phenomena. In this study, we use curvature elasticity to present non-intuitive, yet remarkably simple, universal relationships that capture vesicle–substrate interactions. These relationships not only provide efficient strategies to tease out adhesion energy of biological molecules but can also be used to characterize the physical properties of elastic biomimetic nanoparticles. We validate the modeling predictions with experimental data from two previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal A (2011) Mechanics of membrane–membrane adhesion. Math Mech Solids 16(8):872. doi:10.1177/1081286511401364

    Article  MathSciNet  MATH  Google Scholar 

  • Agrawal A, Steigmann DJ (2009) Boundary-value problems in the theory of lipid membranes. Contin Mech Thermodyn 21(1):57. doi:10.1007/s00161-009-0102-8

    Article  MathSciNet  MATH  Google Scholar 

  • Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4(11):2868

    Article  Google Scholar 

  • Albersdorfer A, Feder T, Sackmann E (1997) Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J 73(1):245. doi:10.1016/S0006-3495(97)78065-2

    Article  Google Scholar 

  • Alberts B (2008) Molecular biology of the cell, vol 1. Garland Science, New York

    Google Scholar 

  • Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, Mitragotri S (2015) Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9(3):3169

    Article  Google Scholar 

  • Aplin A, Howe A, Alahari S, Juliano R (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50(2):197

    Google Scholar 

  • Benson DL, Schnapp LM, Shapiro L, Huntley GW (2000) Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell Biol 10(11):473

    Article  Google Scholar 

  • Bernard AL, Guedeau-Boudeville MA, Jullien L, Di Meglio JM (2000) Strong adhesion of giant vesicles on surfaces: dynamics and permeability. Langmuir 16(17):6809

    Article  Google Scholar 

  • Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1):61IN777

    Article  Google Scholar 

  • Capovilla R, Guven J (2002) Geometry of lipid vesicle adhesion. Phys Rev E Stat Nonlinear Soft Matter Phys 66(4):1. doi:10.1103/PhysRevE.66.041604

    Article  Google Scholar 

  • Cheng QH, Liu P, Gao HJ, Zhang YW (2009) A computational modeling for micropipette-manipulated cell detachment from a substrate mediated by receptor–ligand binding. J Mech Phys Solids 57(2):205. doi:10.1016/j.jmps.2008.11.003

    Article  Google Scholar 

  • Cuvelier D, Nassoy P (2004) Hidden dynamics of vesicle adhesion induced by specific stickers. Phys Rev Lett 93(22):1. doi:10.1103/PhysRevLett.93.228101

    Article  Google Scholar 

  • Das S, Du Q (2008) Adhesion of vesicles to curved substrates. Phys Rev E 77(1):011907

    Article  Google Scholar 

  • Decuzzi P, Ferrari M (2008) Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29(3):377

    Article  Google Scholar 

  • Deserno M (2015) Fluid lipid membranes: from differential geometry to curvature stresses. Chem Phys Lipids 185:11

    Article  Google Scholar 

  • Deserno M, Müller MM, Guven J (2007) Contact lines for fluid surface adhesion. Phys Rev E 76(1):011605

    Article  Google Scholar 

  • Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci 106(51):21495

    Article  Google Scholar 

  • Edelman GM (1983) Cell adhesion molecules. Science 219(4584):450

    Article  Google Scholar 

  • Evans EA (1980) Analysis of adhesion of large vesicles to surfaces. Biophys J 31(3):425. doi:10.1016/S0006-3495(80)85069-7

    Article  Google Scholar 

  • Fenz SF, Smith AS, Merkel R, Sengupta K (2011) Switching from ultraweak to strong adhesion. Soft Matter 7(3):952. doi:10.1039/C0sm00550a

    Article  Google Scholar 

  • Freund LB (2009) Characterizing the resistance generated by a molecular bond as it is forcibly separated. Math Mech Solids 14(1–2):148. doi:10.1177/1081286508092608

    Article  MathSciNet  Google Scholar 

  • Freund LB, Lin Y (2004) The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion. J Mech Phys Solids 52(11):2455. doi:10.1016/j.jmps.2004.05.004

    Article  MATH  Google Scholar 

  • Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715):679

    Article  Google Scholar 

  • Gruhn T, Franke T, Dimova R, Lipowsky R (2007) Novel method for measuring the adhesion energy of vesicles. Langmuir 23(10):5423. doi:10.1021/la063123r

    Article  Google Scholar 

  • Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345

    Article  Google Scholar 

  • Guttenberg Z, Bausch AR, Hu B, Bruinsma R, Moroder L, Sackmann E (2000) Measuring ligand–receptor unbinding forces with magnetic beads: molecular leverage. Langmuir 16(23):8984. doi:10.1021/la000279x

    Article  Google Scholar 

  • Guttenberg Z, Lorz B, Sackmann E, Boulbitch A (2001) First-order transition between adhesion states in a system mimicking cell–tissue interaction. Europhys Lett (EPL) 54(6):826. doi:10.1209/epl/i2001-00328-9

    Article  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12):693

    Google Scholar 

  • Hu CMJ, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV et al (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571):118

    Article  Google Scholar 

  • Huttenlocher A, Sandborg RR, Horwitz AF (1995) Adhesion in cell migration. Curr Opin Cell Biol 7(5):697

    Article  Google Scholar 

  • Jenkins JT (1977) The equations of mechanical equilibrium of a model membrane. SIAM J Appl Math 32(4):755

    Article  MathSciNet  MATH  Google Scholar 

  • Juliano R (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Ann Rev Pharmacol Toxicol 42(1):283

    Article  Google Scholar 

  • Lai ACK, Wan KT, Chan V (2002) Substrate-induced deformation and adhesion of phospholipid vesicles at the main phase transition. Biophys Chem 99(3):245. doi:10.1016/S0301-4622(02)00201-6

    Article  Google Scholar 

  • Lin Y, Freund L (2007) Forced detachment of a vesicle in adhesive contact with a substrate. Int J Solids Struct 44(6):1927

    Article  MATH  Google Scholar 

  • Lipowsky R, Seifert U (1991) Adhesion of vesicles and membranes. Mol Cryst Liq Cryst 202(1):17. doi:10.1080/00268949108035656

    Article  Google Scholar 

  • Lorz BG, Smith AS, Gege C, Sackmann E (2007) Adhesion of giant vesicles mediated by weak binding of sialyl-LewisX to E-selectin in the presence of repelling poly (ethylene glycol) molecules. Langmuir 23(24):12293. doi:10.1021/la701824q

    Article  Google Scholar 

  • Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8(1):15

    Article  Google Scholar 

  • Prechtel K, Bausch AR, Marchi-Artzner V, Kantlehner M, Kessler H, Merkel R (2002) Dynamic force spectroscopy to probe adhesion strength of living cells. Phys Rev Lett 89(2):028101. doi:10.1103/PhysRevLett.89.028101

    Article  Google Scholar 

  • Reister-Gottfried E, Sengupta K, Lorz B, Sackmann E, Seifert U, Smith AS (2008) Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. Phys Rev Lett 101(20):1. doi:10.1103/PhysRevLett.101.208103

    Article  Google Scholar 

  • Rosso R, Virga EG (1998) Adhesion by curvature of lipid tubules. Continuum Mech Thermodyn 10:359

    Article  MathSciNet  MATH  Google Scholar 

  • Rutishauser U, Jessell T (1988) Cell adhesion molecules in vertebrate neural development. Physiol Rev 68(3):819

    Article  Google Scholar 

  • Sackmann E, Smith AS (2014) Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter 10(11):1644. doi:10.1039/c3sm51910d

    Article  Google Scholar 

  • Seifert U (1991) Adhesion of vesicles in two dimensions. Phys Rev A 43(12):6803. doi:10.1103/PhysRevA.43.6803

    Article  MathSciNet  Google Scholar 

  • Seifert U, Lipowsky R (1990) Adhesion of vesicles. Phys Rev A 42(8):4768. doi:10.1103/PhysRevA.42.4768

    Article  Google Scholar 

  • Sen S, Subramanian S, Discher DE (2005) Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89(5):3203. doi:10.1529/biophysj.105.063826

    Article  Google Scholar 

  • Sengupta K, Limozin L (2010) Adhesion of soft membranes controlled by tension and interfacial polymers. Phys Rev Lett 104(8):2. doi:10.1103/PhysRevLett.104.088101

    Article  Google Scholar 

  • Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor Notes 2000:1

    Google Scholar 

  • Shenoy VB, Freund LB (2005) Growth and shape stability of a biological membrane adhesion complex in the diffusion-mediated regime. Proc Natl Acad Sci USA 102(9):3213. doi:10.1073/pnas.0500368102

    Article  Google Scholar 

  • Shi W, Feng XQ, Gao H (2006) Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech Sin 22(6):529

    Article  MATH  Google Scholar 

  • Smith AS, Sackmann E (2009) Progress in mimetic studies of cell adhesion and the mechanosensing. ChemPhysChem 10(1):66. doi:10.1002/cphc.200800683

    Article  Google Scholar 

  • Smith AS, Seifert U (2005) Effective adhesion strength of specifically bound vesicles. Phys Rev E Stat Nonlinear Soft Matter Phys 71(6):1. doi:10.1103/PhysRevE.71.061902

    Article  Google Scholar 

  • Smith AS, Seifert U (2007) Vesicles as a model for controlled (de-)adhesion of cells: a thermodynamic approach. Soft Matter 3(3):275. doi:10.1039/b611892e

    Article  Google Scholar 

  • Smith AS, Sackmann E, Seifert U (2004) Pulling tethers from adhered vesicles. Phys Rev Lett 92(20):208101. doi:10.1103/PhysRevLett.92.208101

    Article  Google Scholar 

  • Smith AS, Lorz BG, Goennenwein S, Sackmann E (2006) Antagonist-induced deadhesion of specifically adhered vesicles. Biophys J 90(7):L52. doi:10.1529/biophysj.105.079426

    Article  Google Scholar 

  • Smith AS, Sackmann E, Seifert U (2007) Effects of a pulling force on the shape of a bound vesicle. Europhys Lett (EPL) 64(2):281. doi:10.1209/epl/i2003-00499-9

    Article  Google Scholar 

  • Smith AS, Sengupta K, Goennenwein S, Seifert U, Sackmann E (2008) Force-induced growth of adhesion domains is controlled by receptor mobility. Proc Natl Acad Sci USA 105(19):6906. doi:10.1073/pnas.0801706105

    Article  Google Scholar 

  • Steigmann DJ (1999) Fluid films with curvature elasticity. Arch Ration Mech Anal 150(2):127. doi:10.1007/s002050050183

    Article  MathSciNet  MATH  Google Scholar 

  • Ursell T. Stretching the definition of a lipid bilayer: elasticity role in protein and lipid organization. Ph.D. thesis, Caltech, CaltechETD:etd-06062009-131454 (2009)

  • Weikl TR, Asfaw M, Krobath H, Róycki B, Lipowsky R (2009) Adhesion of membranes via receptor ligand complexes: domain formation, binding cooperativity, and active processes. Soft Matter 5(17):3213. doi:10.1039/b902017a

    Article  Google Scholar 

  • Yi X, Shi X, Gao H (2011) Cellular uptake of elastic nanoparticles. Phys Rev Lett 107(9):098101. doi:10.1103/PhysRevLett.107.098101

    Article  Google Scholar 

  • Yoo JW, Mitragotri S (2010) Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci 107(25):11205

    Article  Google Scholar 

  • Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10(7):521

    Article  Google Scholar 

  • Yuan H, Li J, Bao G, Zhang S (2010) Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 105(13):138101

    Article  Google Scholar 

  • Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9):8655

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by NSF Grants CMMI 1437330 and CMMI 1562043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Agrawal.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irajizad, E., Agrawal, A. Vesicle adhesion reveals novel universal relationships for biophysical characterization. Biomech Model Mechanobiol 17, 103–109 (2018). https://doi.org/10.1007/s10237-017-0947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0947-x

Keywords

Navigation