Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 1, pp 87–101 | Cite as

Mechanobiological model of arterial growth and remodeling

  • Maziyar Keshavarzian
  • Clark A. Meyer
  • Heather N. Hayenga
Original Article


A coupled agent-based model (ABM) and finite element analysis (FEA) computational framework is developed to study the interplay of bio-chemo-mechanical factors in blood vessels and their role in maintaining homeostasis. The agent-based model implements the power of REPAST Simphony libraries and adapts its environment for biological simulations. Coupling a continuum-level model (FEA) to a cellular-level model (ABM) has enabled this computational framework to capture the response of blood vessels to increased or decreased levels of growth factors, proteases and other signaling molecules (on the micro scale) as well as altered blood pressure. Performance of the model is assessed by simulating porcine left anterior descending artery under normotensive conditions and transient increases in blood pressure and by analyzing sensitivity of the model to variations in the rule parameters of the ABM. These simulations proved that the model is stable under normotensive conditions and can recover from transient increases in blood pressure. Sensitivity studies revealed that the model is most sensitive to variations in the concentration of growth factors that affect cellular proliferation and regulate extracellular matrix composition (mainly collagen).


Agent-based modeling Finite element analysis Coronary artery Multiscale modeling 



The authors acknowledge the financial support for this work provided by the University of Texas at Dallas (startup funds to HNH) and the American Heart Association (Scientist Development Grant 17SDG33400239 to HNH). We would like to thank UT Dallas undergraduate Ramya Akkala and graduate student Rita Bhui for their assistance in scoring the ABM rules.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10237_2017_946_MOESM1_ESM.pdf (5.6 mb)
Supplementary material 1 (pdf 5691 KB)


  1. Absood A (2004) A comparison of oxidized LDL-induced collagen secretion by graft and aortic SMCs: role of PDGF. AJP Heart Circ Physiol 287(3):H1200–H1206. doi: 10.1152/ajpheart.00228.2004 CrossRefGoogle Scholar
  2. Aromatario C, Sterpetti AV, Palumbo R, Patrizi AL, Di Carlo A, Proietti P, Guglielmi MB, Cavallaro A, Santoro-D’Angelo L, Cucina A (1997) Fluid shear stress increases the release of platelet derived growth factor BB (PDGF BB) by aortic endothelial cells. Minerva Cardioangiol 45(1–2):1–7Google Scholar
  3. Bailey AM, Thorne BC, Peirce SM (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng 35(6):916–936. doi: 10.1007/s10439-007-9266-1 CrossRefGoogle Scholar
  4. Bailey AM, Lawrence MB, Shang H, Katz AJ, Peirce SM (2009) Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on p-selectin. PLoS Comput Biol. doi: 10.1371/journal.pcbi.1000294 Google Scholar
  5. Bayer IM, Adamson SL, Langille BL (1999) Atrophic remodeling of the artery-cuffed artery. Arterioscler Thromb Vasc Biol 19(6):1499–1505. doi: 10.1161/01.ATV.19.6.1499 CrossRefGoogle Scholar
  6. Bentley K, Gerhardt H, Bates PA (2008) Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol 250(1):25–36. doi: 10.1016/j.jtbi.2007.09.015 CrossRefGoogle Scholar
  7. Boyle CJ, Lennon AB, Early M, Kelly DJ, Lally C, Prendergast PJ (2010) Computational simulation methodologies for mechanobiological modelling: a cell-centred approach to neointima development in stents. Phil Trans R Soc A 368:2919–2935. doi: 10.1098/rsta.2010.0071 CrossRefGoogle Scholar
  8. Boyle CJ, Lennon AB, Prendergast PJ (2013) Application of a mechanobiological simulation technique to stents used clinically. J Biomech 46(5):918–924. doi: 10.1016/j.jbiomech.2012.12.014 CrossRefGoogle Scholar
  9. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59(1):1–61CrossRefGoogle Scholar
  10. Chapman GB, Durante W, Hellums JD, Schafer aI (2000) Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 278(3):H748–54CrossRefGoogle Scholar
  11. Cockrell RC, Christley S, Chang E, An G (2015) Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT-HPC). PLoS ONE 10(3):1–14. doi: 10.1371/journal.pone.0122192 CrossRefGoogle Scholar
  12. Dancu MB (2004) Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells. Arterioscler Thromb Vasc Biol 24(11):2088–2094. doi: 10.1161/01.ATV.0000143855.85343.0e CrossRefGoogle Scholar
  13. Das M, Bouchey DM, Moore MJ, Hopkins DC, Nemenoff RA, Stenmark KR (2001) Hypoxia-induced proliferative response of vascular adventitial fibroblasts is dependent on g protein-mediated activation of mitogen-activated protein kinases. J Biol Chem 276(19):15631–15640. doi: 10.1074/jbc.M010690200 CrossRefGoogle Scholar
  14. Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness. J Cell Biol 166(6):877–887. doi: 10.1083/jcb.200405004 CrossRefGoogle Scholar
  15. Ethier MF, Hickler RB, Saunders RH (1982) Cholesterol and cholesteryl ester concentration in different size classes of cultured human fibroblasts: effect of in vitro aging. Mech Ageing Dev 20(2):165–174. doi: 10.1016/0047-6374(82)90067-7. arXiv:1011.1669v3
  16. Fridez P, Makino A, Kakoi D, Miyazaki H, Meister JJ, Hayashi K, Stergiopulos N (2002) Adaptation of conduit artery vascular smooth muscle tone to induced hypertension. Ann Biomed Eng 30(7):905–916. doi: 10.1114/1.1507326 CrossRefGoogle Scholar
  17. Garbey M, Rahman M, Berceli S (2015) A multiscale computational framework to understand vascular adaptation. J Comput Sci 8:32–47. doi: 10.1016/j.jocs.2015.02.002 CrossRefGoogle Scholar
  18. Garcia-Lopez G, Vadillo-Ortega F, Merchant-Larios H, Maida-Claros R, Osorio M, Soriano-Becerril D, Flores-Herrera H, Beltran-Montoya J, Garfias-Becerra Y, Zaga-Clavellina V (2007) Evidence of in vitro differential secretion of 72 and 92 kDa type IV collagenases after selective exposure to lipopolysaccharide in human fetal membranes. Mol Hum Reprod 13(6):409–418. doi: 10.1093/molehr/gam025 CrossRefGoogle Scholar
  19. Garipcan B, Maenz S, Pham T, Settmacher U, Jandt KD, Zanow J, Bossert J (2011) Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries–a preliminary study. Adv Eng Mater 13(1–2):54–57. doi: 10.1002/adem.201080076 CrossRefGoogle Scholar
  20. Geisterfer AA, Peach MJ, Owens GK (1988) Angiotensin ii induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62(4):749–756CrossRefGoogle Scholar
  21. Gingras M, Farand P, Safar ME, Plante GE (2009) Adventitia: the vital wall of conduit arteries. J Am Soc Hypertens 3(3):166–183. doi: 10.1016/j.jash.2009.03.002 CrossRefGoogle Scholar
  22. Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404Google Scholar
  23. Guo X, Liu Y, Kassab GS (2012) Diameter-dependent axial prestretch of porcine coronary arteries and veins. J Appl Physiol 112(6):982–989. doi: 10.1152/japplphysiol.00857.2011 CrossRefGoogle Scholar
  24. Hayashi K, Naiki T (2009) Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater 2(1):3–19. doi: 10.1016/j.jmbbm.2008.05.002 CrossRefGoogle Scholar
  25. Hayenga HN, Thorne BC, Peirce SM, Humphrey JD (2011) Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann Biomed Eng 39(11):2669–2682. doi: 10.1007/s10439-011-0363-9 CrossRefGoogle Scholar
  26. Hayenga HN, Hu JJ, Meyer CA, Wilson E, Hein TW, Kuo L, Humphrey JD (2012) Differential progressive remodeling of coronary and cerebral arteries and arterioles in an aortic coarctation model of hypertension. Front Physiol. doi: 10.3389/fphys.2012.00420
  27. Hayenga HN, Thorne BC, Yen P, Papin JA, Peirce SM, Humphrey JD (2013) Multiscale computational modeling in vascular biology: from molecular mechanisms to tissue-level structure and function. In: Multiscale computer modeling in biomechanics and biomedical engineering SE - 147, vol 14, pp 209–240, doi: 10.1007/8415_2012_147
  28. Hsieh HJ, Li NQ, Ja Frangos (1991) Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol 260(2 Pt 2):H642–6Google Scholar
  29. Hu JJ, Ambrus A, Fossum TW, Miller MW, Humphrey JD, Wilson E (2008) Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination. J Histochem Cytochem 56(4):359–370CrossRefGoogle Scholar
  30. Humphrey JD (2002) Cardiovascular solid mechanics, vol 1. Springer, New York. doi: 10.1007/978-0-387-21576-1 CrossRefGoogle Scholar
  31. Humphrey JD, Dufresne ER, Schwartz Ma (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812, doi: 10.1038/nrm3896
  32. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension. Hypertension 38(3):581–587. doi: 10.1161/hy09t1.096249 CrossRefGoogle Scholar
  33. Jenkins C, Milsted A, Doane K, Meszaros G, Toot J, Ely D (2007) A cell culture model using rat coronary artery adventitial fibroblasts to measure collagen production. BMC Cardiovasc Disord 7(1):13. doi: 10.1186/1471-2261-7-13 CrossRefGoogle Scholar
  34. Kanai AJ, Strauss HC, Truskey GA, Crews AL, Grunfeld S, Malinski T (1995) Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ Res 77(2):284–293. doi: 10.1161/01.RES.77.2.284 CrossRefGoogle Scholar
  35. Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892, doi: 10.1109/TPAMI.2002.1017616, arXiv:0711.0189v1
  36. Karagiannis ED, Popel AS (2004) A theoretical model of type I collagen proteolysis by matrix metalloproteinase (mmp) 2 and membrane type 1 mmp in the presence of tissue inhibitor of metalloproteinase 2. J Biol Chem 279(37):39105–39114. doi: 10.1074/jbc.M403627200 CrossRefGoogle Scholar
  37. Karagiannis ED, Popel AS (2006) Distinct modes of collagen type i proteolysis by matrix metalloproteinase (mmp) 2 and membrane type i mmp during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol 238(1):124–145. doi: 10.1016/j.jtbi.2005.05.020 CrossRefGoogle Scholar
  38. Karakiulakis G, Papakonstantinou E, Aletras AJ, Tamm M, Roth M (2007) Cell type-specific effect of hypoxia and platelet-derived growth factor-BB on extracellular matrix turnover and its consequences for lung remodeling. J Biol Chem 282(2):908–915. doi: 10.1074/jbc.M602178200 CrossRefGoogle Scholar
  39. Karšaj I, Humphrey JD (2012) A multilayered wall model of arterial growth and remodeling. Mech Mater 44:110–119. doi: 10.1016/j.mechmat.2011.05.006 CrossRefGoogle Scholar
  40. Karšaj I, Sorić J, Humphrey J (2010) A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. Int J Eng Sci 48(11):1357–1372. doi: 10.1016/j.ijengsci.2010.06.033 CrossRefMATHGoogle Scholar
  41. Kim YJ, Sah RL, Doong JY, Grodzinsky aJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174(1):168–176. doi: 10.1016/0003-2697(88)90532-5 CrossRefGoogle Scholar
  42. Kim DK, Huh JE, Lee SH, Hong KP, Park JE, Seo JD, Lee WR (1999) Angiotensin II stimulates proliferation of adventitial fibroblasts cultured from rat aortic explants. J Korean Med Sci 14(5):487. doi: 10.3346/jkms.1999.14.5.487 CrossRefGoogle Scholar
  43. Kim YS, Galis ZS, Rachev A, Han HC, Vito RP (2009) Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries. J Biomech Eng 131(1):011009. doi: 10.1115/1.3005163 CrossRefGoogle Scholar
  44. Korshunov VA, Schwartz SM, Berk BC (2007) Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscle Thromb Vasc Biol 27(8):1722–1728. doi: 10.1161/ATVBAHA.106.129254 CrossRefGoogle Scholar
  45. Lê J, Dauchot P, Perrot JL, Cambazard F, Frey J, Chamson A (1999) Quantitative zymography of matrix metalloproteinases by measuring hydroxyproline: Application to gelatinases A and B. Electrophoresis 20(14):2824–2829. doi: 10.1002/(SICI)1522-2683(19991001)20:14<2824::AID-ELPS2824>3.0.CO;2-H
  46. Lefevre M, Rucker RB (1980) Aorta elastin turnover in normal and hypercholesterolemic Japanese quail. Biochim Biophys Acta 630(4):519–529. doi: 10.1016/0304-4165(80)90006-9 CrossRefGoogle Scholar
  47. Li Z, Moore S, Alavi MZ (1995) Mitogenic factors released from smooth muscle cells are responsible for neointimal cell proliferation after balloon catheter deendothelialization. Exp Mol Pathol 63(2):77–86. doi: 10.1006/exmp.1995.1032 CrossRefGoogle Scholar
  48. Lou X (1999) Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use. J Biomater Appl. doi: 10.1177/088532829901400204 Google Scholar
  49. Lu Q, Ganesan K, Simionescu DT, Vyavahare NR (2004) Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25(22):5227–5237. doi: 10.1016/j.biomaterials.2003.12.019 CrossRefGoogle Scholar
  50. Ma YH, Ling S, Ives HE (1999) Mechanical strain increases PDGF-B and PDGF \(\beta \) receptor expression in vascular smooth muscle cells. Biochem Biophys Res Commun 265(2):606–610. doi: 10.1006/bbrc.1999.1718 CrossRefGoogle Scholar
  51. Mata-Greenwood E (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF- 1 and reactive oxygen species: a requirement for NAD(P)H oxidase. AJP Lung Cell Mol Physiol 289(2):L288–L289. doi: 10.1152/ajplung.00417.2004 CrossRefGoogle Scholar
  52. Morishita R, Gibbons GH, Horiuchi M, Kaneda Y, Ogihara T, Dzau VJ (1998) Role of AP-1 complex in angiotensin II-mediated transforming growth factor-\(\beta \) expression and growth of smooth muscle cells: using decoy approach against AP-1 binding site. Biochem Biophys Res Commun 243(2):361–367. doi: 10.1006/bbrc.1997.8012 CrossRefGoogle Scholar
  53. Murphy G, McAlpine CG, Poll CT, Reynolds JJ (1985) Purification and characterization of a bone metalloproteinase that degrades gelatin and types IV and V collagen. Biochim et Biophys Acta (BBA) Protein Struct Mol Enzymol 831(1):49–58. doi: 10.1016/0167-4838(85)90148-7 CrossRefGoogle Scholar
  54. Norris TO, McGraw J (1964) Gelatin coatings and tensile strength of gelatin films. J Appl PolymSci 8(5):2139–2145. doi: 10.1002/app.1964.070080514 CrossRefGoogle Scholar
  55. North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P (2013) Complex adaptive systems modeling with repast simphony. Complex Adapt Syst Model 1(1):1–26. doi: 10.1186/2194-3206-1-3 CrossRefGoogle Scholar
  56. Okuno T, Andoh A, Bamba S, Araki Y, Fujiyama Y, Fujimiya M, Bamba T (2002) Interleukin-1\(\beta \) and tumor necrosis factor-\(\alpha \) induce chemokine and matrix metalloproteinase gene expression in human colonic subepithelial myofibroblasts. Scand J Gastroenterol 37(3):317–324. doi: 10.1080/003655202317284228 CrossRefGoogle Scholar
  57. Owens GK, Rabinovitch PS, Schwartz SM (1981) Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci 78(12):7759–7763. doi: 10.1073/pnas.78.12.7759 CrossRefGoogle Scholar
  58. Peirce SM, Van Gieson EJ, Skalak TC (2004) Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J Off Publ Fed Am Soc Exp Biol 18(6):731–733. doi: 10.1096/fj.03-0933fje Google Scholar
  59. Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, Gansner M, Depre C, Resuello RRG, Natividad FF, Hunter WC, Genin GM, Elson EL, Vatner DE, Meininger GA, Vatner SF (2010) Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res 107(5):615–619. doi: 10.1161/CIRCRESAHA.110.221846 CrossRefGoogle Scholar
  60. Reidy MA (1994) Growth factors and arterial smooth muscle cell proliferationa. Ann N Y Acad Sci 714(1):225–230. doi: 10.1111/j.1749-6632.1994.tb12047.x CrossRefGoogle Scholar
  61. Sáez P, Peña E, Martínez MA, Kuhl E (2014) Computational modeling of hypertensive growth in the human carotid artery. Comput Mech 53(6):1183–1196. doi: 10.1007/s00466-013-0959-z MathSciNetCrossRefMATHGoogle Scholar
  62. Schiffrin EL (2012) Vascular remodeling in hypertension: mechanisms and treatment. Hypertension 59(2):367–374. doi: 10.1161/HYPERTENSIONAHA.111.187021 CrossRefGoogle Scholar
  63. Schlumberger W, Thie M, Rauterberg J, Robenek H (1991) Collagen synthesis in cultured aortic smooth muscle cells. Modulation by collagen lattice culture, transforming growth factor-beta 1, and epidermal growth factor. Arterioscle Thromb Vasc Biol 11(6):1660–1666. doi: 10.1161/01.ATV.11.6.1660 CrossRefGoogle Scholar
  64. Sokolis DP, Sassani S, Kritharis EP, Tsangaris S (2011) Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy. Med Biol Eng Comput 49(8):867–879. doi: 10.1007/s11517-011-0784-5 CrossRefGoogle Scholar
  65. Stegemann JP, Nerem RM (2003) Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp Cell Res 283(2):146–155. doi: 10.1016/S0014-4827(02)00041-1 CrossRefGoogle Scholar
  66. Stroka KM, Aranda-Espinoza H (2011) Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118(6):1632–1640. doi: 10.1182/blood-2010-11-321125 CrossRefGoogle Scholar
  67. Thorne BC, Hayenga HN, Humphrey JD, Peirce SM (2011) Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent-based model. Front Physiol. doi: 10.3389/fphys.2011.00020 Google Scholar
  68. Valentin A, Humphrey J (2009) Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos Trans R Soc Lond A Math Phys Eng Sci 367(1902):3585–3606. doi: 10.1098/rsta.2009.0113 MathSciNetCrossRefMATHGoogle Scholar
  69. van den Broek CN, Van der Horst A, Rutten MC, Van De Vosse FN (2011) A generic constitutive model for the passive porcine coronary artery. Biomech Model Mechanobiol 10(2):249–258. doi: 10.1007/s10237-010-0231-9 CrossRefGoogle Scholar
  70. Vempati P, Karagiannis ED, Popel AS (2007) A biochemical model of matrix metalloproteinase 9 activation and inhibition. J Biol Chem 282(52):37585–37596. doi: 10.1074/jbc.M611500200 CrossRefGoogle Scholar
  71. Wang C, Garcia M, Lu X, Lanir Y, Kassab GS (2006) Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Phys Heart Circ Phys 291(3):H1200–9. doi: 10.1152/ajpheart.01323.2005
  72. Welgus HG, Jeffrey JJ, Stricklin GP, Roswit WT, Eisen aZ (1980) Characteristics of the action of human skin fibroblast collagenase on fibrillar collagen. J Biol Chem 255(14):6806–6813Google Scholar
  73. Welgus HG, Jeffrey JJ, Eisen aZ (1981) The collagen substrate specificity of human skin fibroblast collagenase. J Biol Chem 256(18):9511–9515Google Scholar
  74. Wilensky U, Evanston I (1999) NetLogo: center for connected learning and computer-based modeling. Northwestern University, EvanstonGoogle Scholar
  75. Wu J, Thabet SR, Kirabo A, Trott DW, Saleh MA, Xiao L, Madhur MS, Chen W, Harrison DG (2014) Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ Res 114(4):616–625. doi: 10.1161/CIRCRESAHA.114.302157 CrossRefGoogle Scholar
  76. Xia T, Akers K, Eisen AZ, Seltzer JL (1996) Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides. Biochim et Biophys Acta (BBA) Protein Struct Mol Enzymology 1293(2):259–266. doi: 10.1016/0167-4838(95)00259-6
  77. Yakimets I, Wellner N, Smith AC, Wilson RH, Farhat I, Mitchell J (2005) Mechanical properties with respect to water content of gelatin films in glassy state. Polymer 46(26):12577–12585. doi: 10.1016/j.polymer.2005.10.090 CrossRefGoogle Scholar
  78. Zahedmanesh H, Lally C (2012) A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Biomech Model Mechanobiol 11(3–4):363–77. doi: 10.1007/s10237-011-0316-0 CrossRefGoogle Scholar
  79. Zahedmanesh H, Van Oosterwyck H, Lally C (2014) A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes. Comput Methods Biomech Biomed Eng. doi: 10.1080/10255842.2012.716830
  80. Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol 18(5):686–692. doi: 10.1161/01.ATV.18.5.686 CrossRefGoogle Scholar
  81. Zulliger Ma, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7):989–1000. doi: 10.1016/j.jbiomech.2003.11.026 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe University of Texas at DallasRichardsonUSA

Personalised recommendations