Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 1, pp 71–86 | Cite as

Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model

Original Paper
  • 90 Downloads

Abstract

In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.

Keywords

Peristaltic motion Third-grade non-Newtonian biofluid Porous vessels Perturbation method Long-wavelength approximation 

Notes

Acknowledgements

The author would like to acknowledge the Shahrood University of Technology, which supported this project.

Compliance with ethical standards

Conflict of interest

I wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

References

  1. Abdulhameed M, Roslan R, Mohamad MB (2014) A modified homotopy perturbation transform method for transient flow of a third grade fluid in a channel with oscillating motion on the upper wall, Journal of Computational Engineering, 2014. Article ID 102197, 1–11Google Scholar
  2. Agarwal S, Sinha AK, Singh SP (2012) A theoretical analysis of the effect of the non-Newtonian bile flow characteristics in the diseased cystic duct. Int J Appl Math Mech 8:92–103Google Scholar
  3. Akbar NS, Rahman SU, Ellahi R, Nadeem S (2014) Blood flow study of Williamson fluid through stenosed arteries with permeable walls. Eur Phys J Plus 129(11):1–10Google Scholar
  4. Akbarzadeh P (2016) Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Comput Methods Programs Biomed 126:3–19CrossRefGoogle Scholar
  5. Ali N, Hayat T, Sajid M (2007) Peristaltic flow of a couple stress fluid in an asymmetric channel. Biorheology 44(2):125–38Google Scholar
  6. Ali N, Javid K, Sajid M (2016) Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel. AIP Adv 6:025111CrossRefGoogle Scholar
  7. Alimohamadi H, Imani M (2014) Transient non-Newtonian blood flow under magnetic targeting drug delivery in an aneurysm blood vessel with porous walls. Int J Comput Methods Eng Sci Mech 15(6):522–533MathSciNetCrossRefGoogle Scholar
  8. Barton C, Raynor S (1968) Peristaltic flow in tubes. Bull Math Biophys 30(4):663–680CrossRefMATHGoogle Scholar
  9. Caballero AD, Lain S (2015) Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Eng 18(11):1200–1216CrossRefGoogle Scholar
  10. Cherry EM, Eatona JK (2013) Simulation of magnetic particles in the bloodstream for magnetic drug targeting applications. In: 8th international conference on multiphase flow, ICMF 2013, Jeju, Korea, May 26–31Google Scholar
  11. Eldabe NTM, Agoor BM, Alame H (2014) Peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in channel under uniform magnetic field. J Fluids 2014:1–12Google Scholar
  12. Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Appl Math Model 37(3):1451–1467MathSciNetCrossRefMATHGoogle Scholar
  13. Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Modell 52(9–10):1783–1793MathSciNetCrossRefMATHGoogle Scholar
  14. Ellahi R, Rahman SU, Nadeem S (2014) Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Phys Lett A 378(40):2973–2980CrossRefMATHGoogle Scholar
  15. El-Sayed MF, Eldabe NTM, Ghaly AY, Sayed HM (2011) Effects of chemical reaction, heat, and mass transfer on non-Newtonian fluid flow through porous medium in a vertical peristaltic tube. Transp Porous Media 89:185–212MathSciNetCrossRefGoogle Scholar
  16. Eytan O, Jaffa AJ, Elad D (2001) Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med Eng Phys 23:473–482CrossRefGoogle Scholar
  17. Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech 35:669–75CrossRefMATHGoogle Scholar
  18. Haldar K, Andersson HI (1996) Two-layered model of blood flow through stenosed arteries. Acta Mech 117:221–228CrossRefMATHGoogle Scholar
  19. Hatami M, Ganji DD (2013) Heat transfer and flow analysis for SA-TiO\(_{2}\) non-Newtonian nanofluid passing through the porous media between two coaxial cylinders. J Mol Liq 188:155–161CrossRefGoogle Scholar
  20. Hatami M, Ganji DD (2014) Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Stud Therm Eng 2:14–22CrossRefGoogle Scholar
  21. Hatami M, Hatami J, Ganji DD (2014) Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian of fluid in a hollow porous vessel. Comput Methods Programs Biomed 113:632–641CrossRefGoogle Scholar
  22. Hayat T, Wang Y, Siddiqui AM, Hutter K, Asghar S (2002) Peristaltic transport of a third-order fluid in a circular cylindrical tube. Math Models Methods Appl Sci 12(12):1691–1706MathSciNetCrossRefMATHGoogle Scholar
  23. Hayat T, Hina S, Hendi AA, Asghar S (2011) Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int J Heat Mass Transf 54:5126–5136CrossRefMATHGoogle Scholar
  24. Hina S, Hayat T, Mustafa M, Aldossary OM, Asghar S (2012) Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel. J Mech Med Biol 12(4):1–16CrossRefGoogle Scholar
  25. Hina S, Mustafa M, Hayat T, Alsaadi FE (2014) Peristaltic motion of third grade fluid in curved channel. Appl Math Mech 35:73–84MathSciNetCrossRefGoogle Scholar
  26. Hina S, Mustafa M, Abbasbandy S, Hayat T, Alsaadi FE (2014) Peristaltic motion of nanofluid in a curved channel. J Heat Transfer 136(5):1–7CrossRefGoogle Scholar
  27. Hina S, Mustafa M, Hayat T, Alotaibi ND (2015) On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl Math Comput 263(C):378–391MathSciNetGoogle Scholar
  28. Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13–37CrossRefGoogle Scholar
  29. Khan Y, Smarda Z (2013) Heat transfer analysis on the Hiemenz flow of a non-Newtonian fluid: a Homotopy method solution. Abstract and Applied Analysis. Article ID 342690, 1–5Google Scholar
  30. Kuchumov AG, Gilev V, Popov V, Samartsev V, Gavrilov V (2014) Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations. Korea–Aust Rheol J 26(1):81–90CrossRefGoogle Scholar
  31. Latham TW (1966) Fluid motion in peristaltic pump. M.sc Thesis, Massachusetts Institute of Technology, Cambridge MAGoogle Scholar
  32. Li WG, Luo XY, Chin SB, Hill NA, Johnson AG, Bird NC (2008) Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling. Ann Biomed Eng 36(11):1893–1908CrossRefGoogle Scholar
  33. Macagno EO, Christensen J, Lee CL (1982) Modeling the effect of wall movement on absorption in the intestine. Am J Physiol 243(6):541–550Google Scholar
  34. Majhi SN, Nair VR (1994) Pulsatile flow of third grade fluids under body acceleration-Modelling blood flow. Int J Eng Sci 32(5):839–846CrossRefMATHGoogle Scholar
  35. Massoudi M, Phuoc TX (2008) Pulsatile flow of blood using a modified second-grade fluid model. Comput Math Appl 56:199–211MathSciNetCrossRefMATHGoogle Scholar
  36. Mekheimer KS, El-Shehawey EF, Elaw AM (1998) Peristaltic motion of a particle-fluid suspension in a planar channel. Int J Theor Phys 37(11):2895–2920CrossRefMATHGoogle Scholar
  37. Mittra TK, Prasad SN (1974) Interaction of peristaltic motion with Poiseuille flow. Bull Math Biol 36(2):127–141CrossRefMATHGoogle Scholar
  38. Moyers-Gonzalez MA, Owens RG, Fang J (2008) A non-homogeneous constitutive model for human blood. Part III: oscillatory flow, J Nonnewton Fluid Mech 155:161–173CrossRefMATHGoogle Scholar
  39. Prakash J, Ogulu A (2007) A study of pulsatile blood flow model as a power law fluid in a constricted tube. Int Commun Heat Mass Transfer 34(6):762–768CrossRefGoogle Scholar
  40. Rao AR, Mishra M (2004) Peristaltic transport of a power-law fluid in a porous tube. J Nonnewton Fluid Mech 121(2):163–174MATHGoogle Scholar
  41. Rao AR, Mishra M (2004) Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech 168(1–2):35–59MATHGoogle Scholar
  42. Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37(4):799–825CrossRefGoogle Scholar
  43. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879CrossRefGoogle Scholar
  44. Sheikholeslami M, Ganji DD (2014) Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia Iranica 21(1):203–212Google Scholar
  45. Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663MathSciNetCrossRefGoogle Scholar
  46. Sheikholeslami M, Ganji DD (2016) Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect. J Mol Liq 224:526–537CrossRefGoogle Scholar
  47. Sheikholeslami M, Ashorynejad HR, Ganji DD, Yıldırım A (2012) Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica 19(3):437–442CrossRefGoogle Scholar
  48. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech English Edit 33(1):25–36MathSciNetCrossRefMATHGoogle Scholar
  49. Sheikholeslami M, Ashorynejad HR, Ganji DD, Hashim I (2012) Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using Optimal Homotopy Asymptotic Method. Sains Malays 41(10):1281–1285Google Scholar
  50. Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265CrossRefGoogle Scholar
  51. Sheikholeslami M, Ellahi R, Ashorynejad HR, Ganji DD, Hayat T (2014) Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci 11(2):486–496CrossRefGoogle Scholar
  52. Sheikholeslami M, Ganji DD, Rashidi MM (2016) Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magn Mater 416:164–173CrossRefGoogle Scholar
  53. Srinivas S, Kothandapani M (2008) Peristaltic transport in an asymmetric channel with heat transfer-A note. Int Commun Heat Mass Transfer 35(4):514–522CrossRefMATHGoogle Scholar
  54. Srinivasacharya D, Mishra M, Rao AR (2003) Peristaltic pumping of a micropolar fluid in a tube. Acta Mech 161(3–4):165–178MATHGoogle Scholar
  55. Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-I. Flow in non-uniform geometry. Biorheology 20(2):153–166CrossRefGoogle Scholar
  56. Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-II. Flow in non-uniform geometry. Biorheology 20(2):167–178CrossRefGoogle Scholar
  57. Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-III. Flow in non-uniform geometry. Biorheology 20(2):179–185CrossRefGoogle Scholar
  58. Tripathi D, Beg OA (2012) Magnetohydrodynamic peristaltic flow of a couple stress fluid through coaxial channels containing a porous medium. J Mech Med Biol 12(2):1–20Google Scholar
  59. Usha S, Rao AR (1995) Peristaltic transport of a biofluid in a pipe of elliptic cross section. J Biomech 28(1):45–52CrossRefGoogle Scholar
  60. Usha S, Rao AR (1997) Peristaltic transport of two-layered power-law fluids. J Biomech Eng 119(4):483–488CrossRefGoogle Scholar
  61. Vajravelu K, Sreenadh S, Babu VR (2005) Peristaltic transport of a Herschel-Bulkley fluid in an inclined tube. Int J Non-Linear Mech 40(1):83–90CrossRefMATHGoogle Scholar
  62. Vajravelu K, Radhakrishnamacharya G, Radhakrishnamurty V (2007) Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int J Non-Linear Mech 42:754–759CrossRefMATHGoogle Scholar
  63. Vajravelu K, Sreenadh S, Lakshminarayana P (2011) The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Commun Nonlinear Sci Numer Simul 16(8):3107–3125MathSciNetCrossRefMATHGoogle Scholar
  64. Vajravelu K, Sreenadh S, Sucharitha G, Lakshminarayana P (2014) Peristaltic transport of a conducting Jeffrey fluid in an inclined asymmetric channel. Int J Biomath 7(6):1–25MathSciNetCrossRefMATHGoogle Scholar
  65. Vajravelu K, Sreenadh S, Lakshminarayana P, Sucharitha G (2016) The effect of heat transfer on the nonlinear peristaltic transport of a Jeffrey fluid through a finite vertical porous channel. Int J Biomath 9(2):1–24MathSciNetCrossRefMATHGoogle Scholar
  66. Zien TF, Ostrach S (1970) A long wave approximation to peristaltic motion. J Biomech 3(1):63–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations