Skip to main content
Log in

Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulhameed M, Roslan R, Mohamad MB (2014) A modified homotopy perturbation transform method for transient flow of a third grade fluid in a channel with oscillating motion on the upper wall, Journal of Computational Engineering, 2014. Article ID 102197, 1–11

  • Agarwal S, Sinha AK, Singh SP (2012) A theoretical analysis of the effect of the non-Newtonian bile flow characteristics in the diseased cystic duct. Int J Appl Math Mech 8:92–103

    Google Scholar 

  • Akbar NS, Rahman SU, Ellahi R, Nadeem S (2014) Blood flow study of Williamson fluid through stenosed arteries with permeable walls. Eur Phys J Plus 129(11):1–10

    Google Scholar 

  • Akbarzadeh P (2016) Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Comput Methods Programs Biomed 126:3–19

    Article  Google Scholar 

  • Ali N, Hayat T, Sajid M (2007) Peristaltic flow of a couple stress fluid in an asymmetric channel. Biorheology 44(2):125–38

    Google Scholar 

  • Ali N, Javid K, Sajid M (2016) Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel. AIP Adv 6:025111

    Article  Google Scholar 

  • Alimohamadi H, Imani M (2014) Transient non-Newtonian blood flow under magnetic targeting drug delivery in an aneurysm blood vessel with porous walls. Int J Comput Methods Eng Sci Mech 15(6):522–533

    Article  MathSciNet  Google Scholar 

  • Barton C, Raynor S (1968) Peristaltic flow in tubes. Bull Math Biophys 30(4):663–680

    Article  MATH  Google Scholar 

  • Caballero AD, Lain S (2015) Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Eng 18(11):1200–1216

    Article  Google Scholar 

  • Cherry EM, Eatona JK (2013) Simulation of magnetic particles in the bloodstream for magnetic drug targeting applications. In: 8th international conference on multiphase flow, ICMF 2013, Jeju, Korea, May 26–31

  • Eldabe NTM, Agoor BM, Alame H (2014) Peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in channel under uniform magnetic field. J Fluids 2014:1–12

  • Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Appl Math Model 37(3):1451–1467

    Article  MathSciNet  MATH  Google Scholar 

  • Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Modell 52(9–10):1783–1793

    Article  MathSciNet  MATH  Google Scholar 

  • Ellahi R, Rahman SU, Nadeem S (2014) Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Phys Lett A 378(40):2973–2980

    Article  MATH  Google Scholar 

  • El-Sayed MF, Eldabe NTM, Ghaly AY, Sayed HM (2011) Effects of chemical reaction, heat, and mass transfer on non-Newtonian fluid flow through porous medium in a vertical peristaltic tube. Transp Porous Media 89:185–212

    Article  MathSciNet  Google Scholar 

  • Eytan O, Jaffa AJ, Elad D (2001) Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med Eng Phys 23:473–482

    Article  Google Scholar 

  • Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech 35:669–75

    Article  MATH  Google Scholar 

  • Haldar K, Andersson HI (1996) Two-layered model of blood flow through stenosed arteries. Acta Mech 117:221–228

    Article  MATH  Google Scholar 

  • Hatami M, Ganji DD (2013) Heat transfer and flow analysis for SA-TiO\(_{2}\) non-Newtonian nanofluid passing through the porous media between two coaxial cylinders. J Mol Liq 188:155–161

    Article  Google Scholar 

  • Hatami M, Ganji DD (2014) Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Stud Therm Eng 2:14–22

    Article  Google Scholar 

  • Hatami M, Hatami J, Ganji DD (2014) Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian of fluid in a hollow porous vessel. Comput Methods Programs Biomed 113:632–641

    Article  Google Scholar 

  • Hayat T, Wang Y, Siddiqui AM, Hutter K, Asghar S (2002) Peristaltic transport of a third-order fluid in a circular cylindrical tube. Math Models Methods Appl Sci 12(12):1691–1706

    Article  MathSciNet  MATH  Google Scholar 

  • Hayat T, Hina S, Hendi AA, Asghar S (2011) Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int J Heat Mass Transf 54:5126–5136

    Article  MATH  Google Scholar 

  • Hina S, Hayat T, Mustafa M, Aldossary OM, Asghar S (2012) Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel. J Mech Med Biol 12(4):1–16

    Article  Google Scholar 

  • Hina S, Mustafa M, Hayat T, Alsaadi FE (2014) Peristaltic motion of third grade fluid in curved channel. Appl Math Mech 35:73–84

    Article  MathSciNet  Google Scholar 

  • Hina S, Mustafa M, Abbasbandy S, Hayat T, Alsaadi FE (2014) Peristaltic motion of nanofluid in a curved channel. J Heat Transfer 136(5):1–7

    Article  Google Scholar 

  • Hina S, Mustafa M, Hayat T, Alotaibi ND (2015) On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl Math Comput 263(C):378–391

    MathSciNet  Google Scholar 

  • Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13–37

    Article  Google Scholar 

  • Khan Y, Smarda Z (2013) Heat transfer analysis on the Hiemenz flow of a non-Newtonian fluid: a Homotopy method solution. Abstract and Applied Analysis. Article ID 342690, 1–5

  • Kuchumov AG, Gilev V, Popov V, Samartsev V, Gavrilov V (2014) Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations. Korea–Aust Rheol J 26(1):81–90

    Article  Google Scholar 

  • Latham TW (1966) Fluid motion in peristaltic pump. M.sc Thesis, Massachusetts Institute of Technology, Cambridge MA

  • Li WG, Luo XY, Chin SB, Hill NA, Johnson AG, Bird NC (2008) Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling. Ann Biomed Eng 36(11):1893–1908

    Article  Google Scholar 

  • Macagno EO, Christensen J, Lee CL (1982) Modeling the effect of wall movement on absorption in the intestine. Am J Physiol 243(6):541–550

    Google Scholar 

  • Majhi SN, Nair VR (1994) Pulsatile flow of third grade fluids under body acceleration-Modelling blood flow. Int J Eng Sci 32(5):839–846

    Article  MATH  Google Scholar 

  • Massoudi M, Phuoc TX (2008) Pulsatile flow of blood using a modified second-grade fluid model. Comput Math Appl 56:199–211

    Article  MathSciNet  MATH  Google Scholar 

  • Mekheimer KS, El-Shehawey EF, Elaw AM (1998) Peristaltic motion of a particle-fluid suspension in a planar channel. Int J Theor Phys 37(11):2895–2920

    Article  MATH  Google Scholar 

  • Mittra TK, Prasad SN (1974) Interaction of peristaltic motion with Poiseuille flow. Bull Math Biol 36(2):127–141

    Article  MATH  Google Scholar 

  • Moyers-Gonzalez MA, Owens RG, Fang J (2008) A non-homogeneous constitutive model for human blood. Part III: oscillatory flow, J Nonnewton Fluid Mech 155:161–173

    Article  MATH  Google Scholar 

  • Prakash J, Ogulu A (2007) A study of pulsatile blood flow model as a power law fluid in a constricted tube. Int Commun Heat Mass Transfer 34(6):762–768

    Article  Google Scholar 

  • Rao AR, Mishra M (2004) Peristaltic transport of a power-law fluid in a porous tube. J Nonnewton Fluid Mech 121(2):163–174

    MATH  Google Scholar 

  • Rao AR, Mishra M (2004) Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech 168(1–2):35–59

    MATH  Google Scholar 

  • Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37(4):799–825

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD (2014) Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia Iranica 21(1):203–212

    Google Scholar 

  • Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Ganji DD (2016) Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect. J Mol Liq 224:526–537

    Article  Google Scholar 

  • Sheikholeslami M, Ashorynejad HR, Ganji DD, Yıldırım A (2012) Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica 19(3):437–442

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech English Edit 33(1):25–36

    Article  MathSciNet  MATH  Google Scholar 

  • Sheikholeslami M, Ashorynejad HR, Ganji DD, Hashim I (2012) Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using Optimal Homotopy Asymptotic Method. Sains Malays 41(10):1281–1285

    Google Scholar 

  • Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265

    Article  Google Scholar 

  • Sheikholeslami M, Ellahi R, Ashorynejad HR, Ganji DD, Hayat T (2014) Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci 11(2):486–496

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD, Rashidi MM (2016) Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magn Mater 416:164–173

    Article  Google Scholar 

  • Srinivas S, Kothandapani M (2008) Peristaltic transport in an asymmetric channel with heat transfer-A note. Int Commun Heat Mass Transfer 35(4):514–522

    Article  MATH  Google Scholar 

  • Srinivasacharya D, Mishra M, Rao AR (2003) Peristaltic pumping of a micropolar fluid in a tube. Acta Mech 161(3–4):165–178

    MATH  Google Scholar 

  • Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-I. Flow in non-uniform geometry. Biorheology 20(2):153–166

    Article  Google Scholar 

  • Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-II. Flow in non-uniform geometry. Biorheology 20(2):167–178

    Article  Google Scholar 

  • Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-III. Flow in non-uniform geometry. Biorheology 20(2):179–185

    Article  Google Scholar 

  • Tripathi D, Beg OA (2012) Magnetohydrodynamic peristaltic flow of a couple stress fluid through coaxial channels containing a porous medium. J Mech Med Biol 12(2):1–20

    Google Scholar 

  • Usha S, Rao AR (1995) Peristaltic transport of a biofluid in a pipe of elliptic cross section. J Biomech 28(1):45–52

    Article  Google Scholar 

  • Usha S, Rao AR (1997) Peristaltic transport of two-layered power-law fluids. J Biomech Eng 119(4):483–488

    Article  Google Scholar 

  • Vajravelu K, Sreenadh S, Babu VR (2005) Peristaltic transport of a Herschel-Bulkley fluid in an inclined tube. Int J Non-Linear Mech 40(1):83–90

    Article  MATH  Google Scholar 

  • Vajravelu K, Radhakrishnamacharya G, Radhakrishnamurty V (2007) Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int J Non-Linear Mech 42:754–759

    Article  MATH  Google Scholar 

  • Vajravelu K, Sreenadh S, Lakshminarayana P (2011) The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Commun Nonlinear Sci Numer Simul 16(8):3107–3125

    Article  MathSciNet  MATH  Google Scholar 

  • Vajravelu K, Sreenadh S, Sucharitha G, Lakshminarayana P (2014) Peristaltic transport of a conducting Jeffrey fluid in an inclined asymmetric channel. Int J Biomath 7(6):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Vajravelu K, Sreenadh S, Lakshminarayana P, Sucharitha G (2016) The effect of heat transfer on the nonlinear peristaltic transport of a Jeffrey fluid through a finite vertical porous channel. Int J Biomath 9(2):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Zien TF, Ostrach S (1970) A long wave approximation to peristaltic motion. J Biomech 3(1):63–75

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the Shahrood University of Technology, which supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooria Akbarzadeh.

Ethics declarations

Conflict of interest

I wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, P. Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model. Biomech Model Mechanobiol 17, 71–86 (2018). https://doi.org/10.1007/s10237-017-0945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0945-z

Keywords

Navigation