Skip to main content
Log in

Development of a time-dependent numerical model for the assessment of non-stationary pharyngoesophageal tissue vibrations after total laryngectomy

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Laryngeal cancer due to, e.g., extensive smoking and/or alcohol consumption can necessitate the excision of the entire larynx. After such a total laryngectomy, the voice generating structures are lost and with that the quality of life of the concerning patients is drastically reduced. However, the vibrations of the remaining tissue in the so called pharyngoesophageal (PE) segment can be applied as alternative sound generator. Tissue, scar, and geometric aspects of the PE-segment determine the postoperative substitute voice characteristic, being highly important for the future live of the patient. So far, PE-dynamics are simulated by a biomechanical model which is restricted to stationary vibrations, i.e., variations in pitch and amplitude cannot be handled. In order to investigate the dynamical range of PE-vibrations, knowledge about the temporal processes during substitute voice production is of crucial interest. Thus, time-dependent model parameters are suggested in order to quantify non-stationary PE-vibrations and drawing conclusions on the temporal characteristics of tissue stiffness, oscillating mass, pressure, and geometric distributions within the PE-segment. To adapt the numerical model to the PE-vibrations, an automatic, block-based optimization procedure is applied, comprising a combined global and local optimization approach. The suggested optimization procedure is validated with 75 synthetic data sets, simulating non-stationary oscillations of differently shaped PE-segments. The application to four high-speed recordings is shown and discussed. The correlation between model and PE-dynamics is \(\ge \) 97 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • van As CJ, Tigges M, Wittenberg T, de Coul BMO, Eysholdt U, Hilgers FJ (1999) High-speed digital imaging of neoglottic vibration after total laryngectomy. Arch Otolaryngol Head Neck Surg 125(8):891–897

    Article  Google Scholar 

  • Bartolomei L, Zambito Marsala S, Pighi GP, Cristofori V, Pagano G, Pontarin M, Gioulis M, Marchini C (2011) Botulinum toxin type a: an effective treatment to restore phonation in laryngectomized patients unable to voice. Neurol Sci 32(3):443–447

    Article  Google Scholar 

  • Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs

  • Deshmane VH, Rao RS, Parikh HK, Divatia JV, Parikh DM, Suktharnkar PS, Nikam MT (1995) Pharyngoesophageal segment manometry: its role in determining post-laryngectomy speech. IJO and HNS 47(3):185–190

  • Döllinger M (2009) The next step in voice assessment: High-speed digital endoscopy and objective evaluation. Curr Bioinform 4(2):101–111

    Article  Google Scholar 

  • Döllinger M, Hoppe U, Hettlich F, Lohscheller J, Schuberth S, Eysholdt U (2002) Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Trans Biomed Eng 49(8):773–781

    Article  Google Scholar 

  • Haderlein T, Riedhammer K, Nöth E, Toy H, Schuster M, Eysholdt U, Hornegger J, Rosanowski F (2009) Application of automatic speech recognition to quantitative assessment of tracheoesophageal speech with different signal quality. Folia Phoniatr Logop 61(1):12–17

    Article  Google Scholar 

  • Ingber L (1996) Adaptive simulated annealing. J Control Cybern 25(1):33–54

    MATH  Google Scholar 

  • Ishizaka K, Flanagan JL (1972) Synthesis of a voiced sound from a two-mass model of the vocal cords. bell syst tech J 51(6):1233–1268

    Article  Google Scholar 

  • Liu H, Wan M, Wang S, Niu H (2004) Aerodynamic characteristics of laryngectomees breathing quietly and speaking with the electrolarynx. J Voice 18(4):567–577

    Article  Google Scholar 

  • Lohscheller J, Döllinger M, Schuster M, Eysholdt U, Hoppe U (2003) The laryngectomee substitute voice: image processing of endoscopic recordings by fusion with acoustic signals. Methods Inf Med 42(3):277–281

    Google Scholar 

  • Lohscheller J, Döllinger M, Schuster M, Schwarz R, Eysholdt U, Hoppe U (2004) Quantitative investigation of the vibration pattern of the substitute voice generator. IEEE Trans Biomed Eng 51(8):1394–1400

    Article  Google Scholar 

  • Lucero JC, Koenig LL (2005) Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control. J Acoust Soc Am 117(3 Pt 1):1362–1372

    Article  Google Scholar 

  • Luegmair G, Kniesburges S, Zimmermann M, Sutor A, Eysholdt U, Döllinger M (2010) Optical reconstruction of high-speed surface dynamics in an uncontrollable environment. IEEE Trans Med Imaging 29(12):1979–1991

    Article  Google Scholar 

  • Lundström E, Hammarberg B, Munck-Wikland E, Edsborg N (2008) The pharyngoesophageal segment in laryngectomees-videoradiographic, acoustic, and voice quality perceptual data. Logoped Phoniatr Vocol 33(3):115–125

    Article  Google Scholar 

  • Moon JB, Weinberg B (1987) Aerodynamic and myoelastic contributions to tracheoesophageal voice production. J Speech Hear Res 30(3):387–395

    Article  Google Scholar 

  • Papadas TA, Alexopoulos EC, Mallis A, Jelastopulu E, Mastronikolis NS, Goumas P (2010) Survival after laryngectomy: a review of 133 patients with laryngeal carcinoma. Eur Arch Otorhinolaryngol 267(7):1095–1101

  • Rasp O, Lohscheller J, Döllinger M, Eysholdt U, Hoppe U (2006) The pitch rise paradigm: A new task for real-time endoscopy of non-stationary phonation. Folia Phoniatr Logop 58:175–185

  • Schuster M, Lohscheller J, Kummer P, Hoppe U, Eysholdt U, Rosanowski F (2003) Quality of life in laryngectomees after prosthetic voice restoration. Folia Phoniatr Logop 55(5):211–219

    Article  Google Scholar 

  • Schuster M, Rosanowski F, Schwarz R, Eysholdt U, Lohscheller J (2005) Quantitative detection of substitute voice generator during phonation in patients undergoing laryngectomy. Arch Otolaryngol Head Neck Surg 131(11):945–952

    Article  Google Scholar 

  • Schwarz R (2007) Model-based quantification of pathological voice production. PhD thesis, University Erlangen-Nuremberg, shaker (2007)

  • Schwarz R, Döllinger M, Wurzbacher T, Eysholdt U, Lohscheller J (2008) Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model. J Acoust Soc Am 123(5):2717–2732

    Article  Google Scholar 

  • Schwarz R, Hüttner B, Döllinger M, Luegmair G, Eysholdt U, Schuster M, Lohscheller J, Gürlek E (2011) Substitute voice production: Quantification of pe segment vibrations using a biomechanical model. IEEE Trans Biomed Eng 58(10):2767–2776

    Article  Google Scholar 

  • Shah J (2001) Cancer of the head and neck. American Cancer Society Atlas of Clinical Oncology, BC Decker Inc, Hamilton

    Google Scholar 

  • Singer MI, Blom ED, Hamaker RC (1983) Voice rehabilitation after total laryngectomy. J Otolaryngol 12(5):329–334

    Google Scholar 

  • Stiglmayr M, Schwarz R, Klamroth K, Leugering G, Lohscheller J (2008) Registration of pe segment contour deformations in digital high-speed videos. Med Image Anal 12(3):318–334

    Article  Google Scholar 

  • Takeshita TK, Zozolotto HC, Ribeiro EA, Ricz H, de Azevedo-Marques PM, Dantas RO, Aguiar-Ricz L (2013) Relation between the dimensions and intraluminal pressure of the pharyngoesophageal segment and tracheoesophageal voice and speech proficiency. Head Neck 35(4):500–504

    Article  Google Scholar 

  • Titze IR (2000), Principles of voice, Production, vol 2. NCVS

  • Wurzbacher T, Schwarz R, Döllinger M, Hoppe U, Eysholdt U, Lohscheller J (2006) Model-based classification of nonstationary vocal fold vibrations. J Acoust Soc Am 120(2):1012–1027

    Article  Google Scholar 

  • Wurzbacher T, Döllinger M, Schwarz R, Hoppe U, Eysholdt U, Lohscheller J (2008) Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters. J Acoust Soc Am 123(4):2324–2334

    Article  Google Scholar 

  • Yang A, Stingl M, Berry DA, Lohscheller J, Voigt D, Eysholdt U, Döllinger M (2011) Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model. J Acoust Soc Am 130(2):948–964

    Article  Google Scholar 

  • Yang A, Berry DA, Kaltenbacher M, Döllinger M (2012) Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics. J Acoust Soc Am 131(2):1378–1390

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Deutsche Krebshilfe Grant No. 109204 “Analyse und Modellierung der pharyngo-ösophagealen Schleimhautdynamik nach krankheitsbedingter Kehlkopfentfernung”. Dr. Patel’s contributions to this investigation were supported by NIH/NIDCD grant no. R03DC011360-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Hüttner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hüttner, B., Luegmair, G., Patel, R.R. et al. Development of a time-dependent numerical model for the assessment of non-stationary pharyngoesophageal tissue vibrations after total laryngectomy. Biomech Model Mechanobiol 14, 169–184 (2015). https://doi.org/10.1007/s10237-014-0597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0597-1

Keywords

Navigation