Advertisement

Ocean Dynamics

, Volume 68, Issue 6, pp 723–733 | Cite as

The formation of new quasi-stationary vortex patterns from the interaction of two identical vortices in a rotating fluid

  • Mikhail A. Sokolovskiy
  • Jacques Verron
  • Xavier J. Carton
Article
Part of the following topical collections:
  1. Topical Collection on the International Conference “Vortices and coherent structures: from ocean to microfluids”, Vladivostok, Russia, 28-31 August 2017

Abstract

Within the framework of the quasi-geostrophic approximation, the interactions of two identical initially circular vortex patches are studied using the contour dynamics/surgery method. The cases of barotropic vortices and of vortices in the upper layer of a two-layer fluid are considered. Diagrams showing the end states of vortex interactions and, in particular, the new regime of vortex triplet formation are constructed for a wide range of external parameters. This paper shows that, in the nonlinear evolution of two such (like-signed) vortices, the filaments and vorticity fragments surrounding the merged vortex often collapse into satellite vortices. Therefore, the conditions for the formation and the quasi-steady motions of a new type of triplet-shaped vortex structure are obtained.

Keywords

Vortex interaction Vortex merger Filamentation Triplet Quasi-Geostrophy 

Notes

Funding information

This is a contribution to PRC CNRS/RFBR 1069/16-55-150001. From the side of the MAS work was carried out within the framework of the state task no. 0149-2018-0001. This study receive support from Russian Foundation for Basic Research (Project No 16-05-00121), Russian Scientific Foundation (Project No. 14-50-00095), Ministry of Education and Science of Russian Federation (Project No. 14.W.03.31.0006).

References

  1. Assassi C, Morel Y, Vandermeirsch F, Chaigneau A, Pegliasco C, Morrow RM, Colas F, Fleury S, Carton X, Klein P, Cambra R (2016) An index to distinguish surface and subsurface intensified vortices from surface observations. J Phys Oceanogr 46(8):2529–2552CrossRefGoogle Scholar
  2. Bambrey RR, Reinaud JN, Dritschel DG (2007) Strong interactions between two co-rotating quasi-geostrophic vortices. J Fluid Mech 592:117–133CrossRefGoogle Scholar
  3. Bertrand C, Carton XJ (1993) Vortex merger on the beta-plane. C R Acad Sci Paris 316:1201–1206Google Scholar
  4. Capéran P, Verron J (1988) Numerical simulation of a physical experiment on two-dimensional vortex merger. Fluid Dyn Res 3(1–4):87–92CrossRefGoogle Scholar
  5. Capuano TA, Speich S, Carton X, Blanke B (2018) Mesoscale and submesoscale processes in the Southeast Atlantic and their impact on the regional thermohaline structure. J Geophys Res Oceans 123:1961.  https://doi.org/10.1002/2017JC013396 to appear (online 12 March 2018)CrossRefGoogle Scholar
  6. Carnevale GF, Cavazza P, Orlandi P, Purini R (1991) An explanation for anomalous vortex merger in rotating tank experiments. Phys Fluids A 3:1411–1415CrossRefGoogle Scholar
  7. Carton XJ (1992) On the merger of shielded vortices. Europhys Lett 18:697–703CrossRefGoogle Scholar
  8. Carton XJ (2001) Hydrodynamical modelling of oceanic vortices. Surv Geophys 22(3):179–263CrossRefGoogle Scholar
  9. Carton X, Maze G, Legras B (2002) A two-dimensional vortex merger in an external strain field. J Turbul 3:045CrossRefGoogle Scholar
  10. Carton X, Ciani D, Verron J, Reinaud J, Sokolovskiy M (2016) Vortex merger in surface quasi-geostrophy. Geophys Astrophys Fluid Dyn 110(1):1–22CrossRefGoogle Scholar
  11. Carton X, Morvan M, Reinaud JN, Sokolovskiy MA, L’Hegaret P, Vic C (2017) Vortex merger near topographic slope in a homogeneous rotating fluid. Regular Chaotic Dyn 22(5):455–478CrossRefGoogle Scholar
  12. Cerretelli C, Williamson CHK (2003) The physical mechanism for vortex merging. J Fluid Mech 475:41–77CrossRefGoogle Scholar
  13. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91(2):167–216CrossRefGoogle Scholar
  14. Christiansen JP, Zabusky NJ (1973) Instability, coalescence and fission of finite-area vortex structures. J Fluid Mech 61(part2):219–243CrossRefGoogle Scholar
  15. Ciani D, Carton X, Verron J (2016) On the merger of subsurface isolated vortices. Geophys Astrophys Fluid Dyn 110(1):23–49CrossRefGoogle Scholar
  16. Ciani D, Carton X, Barbosa Aguiar AC, Peliz A, Bashmachnikov I, Ienna F, Chapron B, Santolieri R (2017) Surface signature of Mediterranean water eddies in a long-term high-resolution numerical model. Deep Sea Res Part I Oceanogr Res Pap 130:12–29CrossRefGoogle Scholar
  17. Delbende I, Piton B, Rossi M (2015) Merging of two helical vortices. Eur J Mech B Fluid 49(Part B):363–372CrossRefGoogle Scholar
  18. Dritschel DG (1986) The nonlinear evolution of rotating configurations of uniform vorticity. J Fluid Mech 172:157–182CrossRefGoogle Scholar
  19. Dritschel DG, Waugh DW (1992) Quantification of the inelastic interaction of inequal vortices in two-dimensional vortex dynamics. Phys Fluids A 4(8):1737–1744CrossRefGoogle Scholar
  20. Dritschel DG, Zabusky NJ (1996) On the nature of vortex interactions and models in unforced nearly-inviscid two-dimensional turbulence. Phys Fluids 8(5):1252–1256CrossRefGoogle Scholar
  21. Filyushkin BN, Sokolovskiy MA (2011) Modeling the evolution of intrathermocline lenses in the Atlantic Ocean. J Mar Res 69(2–3):191–220CrossRefGoogle Scholar
  22. Freymuth P, Bank W, Palmer M (1984) First experimental evidence of vortex splitting. Phys Fluids 27(5):1045–1046CrossRefGoogle Scholar
  23. Freymuth P, Bank W, Palmer M (1985) Futher experimental evidence of vortex splitting. J Fluid Mech 152:289–299CrossRefGoogle Scholar
  24. Hopfinger EJ, van Heijst GJF (1993) Vortices in rotating fluids. Ann Rev Fluid Mech 25:241–289CrossRefGoogle Scholar
  25. Katsumata K (2016) Eddies observed by Argo floats. Part I. Eddy transport in the upper 1000 dbar. J Phys Oceanogr 46(11):3471–3486CrossRefGoogle Scholar
  26. Kirchhoff G (1876) Vorlesungen űber mathematische Physik: Mechanik. Taubner, LeipzigGoogle Scholar
  27. Kozlov VF, Makarov VG (1984) Evolution modeling of unstable geostrophic eddies in a barotropic ocean. Oceanology 24(5):556–560Google Scholar
  28. Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, CambridgeGoogle Scholar
  29. Love AEH (1893) On the stability of certain vortex motion. Proc Lond Math Soc s1–25:18–43CrossRefGoogle Scholar
  30. Melander MV, Zabusky NJ, McWilliams JC (1988) Symmetric vortex merger in two dimensions: causes and conditions. J Fluid Mech 195:303–340CrossRefGoogle Scholar
  31. Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13(10):2747–2751CrossRefGoogle Scholar
  32. Meunier P, Ehrenstein U, Leweke T, Rossi M (2002) A merger criterion for two-dimensional co-rotating vortices. Phys Fluids 14(8):2757–2766CrossRefGoogle Scholar
  33. Overman EA, Zabusky NJ (1982) Evolution and merger of isolated vortex structures. Phys Fluids 25:1297–1305CrossRefGoogle Scholar
  34. Polvani LM, Zabusky NJ, Flierl GR (1989) Two-layer geostrophic vortex dynamics: 1. Upper-layer V-states and merger. J Fluid Mech 205:215–242CrossRefGoogle Scholar
  35. Reinaud JN, Dritschel DG (2002) The merger of vertically offset quasi-geostrophic vortices. J Fluid Mech 469:287–315CrossRefGoogle Scholar
  36. Reinaud JN, Dritschel DG (2005) The critical merger distance between two co-rotating quasi-geostrophic vortices. J Fluid Mech 522:357–381CrossRefGoogle Scholar
  37. Roberts KV, Christiansen JP (1972) Topics in computational fluid mechanics. Comput Phys Commun 3(Suppl 1):14–32CrossRefGoogle Scholar
  38. Roshko A (1976) Structure of turbulent shear flows: a new look. AIAA Journal 14th Aerospace Sciences Meeting Paper No 76–78Google Scholar
  39. Rousselet L, Doglioli A, Maes C, Blanke B, Petrenko A (2016) Impacts of mesoscale activity on the water masses and circulation in the Coral Sea. J Geophys Res Oceans 121:7277–7289CrossRefGoogle Scholar
  40. Saffman PG, Szeto R (1980) Equilibrium shape of a pair of equal vortices. Phys Fluids 23(12):2339–2342CrossRefGoogle Scholar
  41. Sokolovskiy MA, Verron J (2000) Finite-core hetons: stability and interactions. J Fluid Mech 423:127–154CrossRefGoogle Scholar
  42. Sokolovskiy MA, Verron J (2014) Dynamics of vortex structures in a stratified rotating fluid. Series atmospheric and oceanographic sciences library, vol 47. Springer, SwitzerlandGoogle Scholar
  43. Valcke S, Verron J (1993) On interactions between two finite-core hetons. Phys Fluids A 5(8):2058–2060CrossRefGoogle Scholar
  44. Verron J, Hopfinger E (1991) The enigmatic merging conditions of two-layer baroclinic vortices. C R Acad Sci Paris Ser II 313(7):737–742Google Scholar
  45. Verron J, Valcke S (1994) Scale-dependent merging of baroclinic vortices. J Fluid Mech 264:81–106CrossRefGoogle Scholar
  46. Verron J, Hopfinger E, McWilliams JC (1990) Sensitivity to initial conditions in the merging of two-layer baroclinic vortices. Phys Fluids A 2(6):886–889CrossRefGoogle Scholar
  47. von Hardenberg J, McWilliams JC, Provenzale A, Shchepetkin A, Weiss JB (2000) Vortex merging in quasi-geostrophic flows. J Fluid Mech 412:331–353CrossRefGoogle Scholar
  48. Waugh DW (1992) The efficiency of symmetric vortex merger. Phys Fluids A 4(8):1745–1758CrossRefGoogle Scholar
  49. Winant CD, Browand FK (1974) Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J Fluid Mech 63(2):237–255CrossRefGoogle Scholar
  50. Zabusky NJ, Hughes MH, Roberts KV (1979) Contour dynamics for the Euler equations in two dimensions. J Comput Phys 30(1):96–106CrossRefGoogle Scholar
  51. Zhang Z, Zhong Y, Tian J, Yang Q, Zhao W (2014) Estimation of eddy heat transport in the global ocean from Argo data. Acta Oceanol Sin 33(1):42–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mikhail A. Sokolovskiy
    • 1
    • 2
  • Jacques Verron
    • 3
  • Xavier J. Carton
    • 4
  1. 1.Institute of Water Problems of Russian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of Oceanology of Russian Academy of SciencesMoscowRussia
  3. 3.Institut des Géosciences de l’Environnement (IGE)Grenoble Cedex 9France
  4. 4.Laboratoire d’Océanographie Physique et Spatiale, IUEM/UBOPlouzanéFrance

Personalised recommendations