Advertisement

Ocean Dynamics

, Volume 68, Issue 4–5, pp 627–644 | Cite as

Turbulence in the presence of internal waves in the bottom boundary layer of the California inner shelf

  • Rachel M. Allen
  • Julian A. Simeonov
  • Joseph Calantoni
  • Mark T. Stacey
  • Evan A. Variano
Article
Part of the following topical collections:
  1. Topical Collection on the 18th conference on Physics of Estuaries and Coastal Seas (PECS), Scheveningen, Netherlands, 9-14 October 2016

Abstract

Turbulence measurements were collected in the bottom boundary layer of the California inner shelf near Point Sal, CA, for 2 months during summer 2015. The water column at Point Sal is stratified by temperature, and internal bores propagate through the region regularly. We collected velocity, temperature, and turbulence data on the inner shelf at a 30-m deep site. We estimated the turbulent shear production (P), turbulent dissipation rate (ε), and vertical diffusive transport (T), to investigate the near-bed local turbulent kinetic energy (TKE) budget. We observed that the local TKE budget showed an approximate balance (P ≈ ε) during the observational period, and that buoyancy generally did not affect the TKE balance. On a finer resolution timescale, we explored the balance between dissipation and models for production and observed that internal waves did not affect the balance in TKE at this depth.

Keywords

Turbulence Turbulent kinetic energy Bottom boundary Inner shelf Point Sal Inner Shelf Experiment Internal waves 

Notes

Acknowledgments

Portions of this work were performed while Rachel M. Allen participated in the Naval Research Enterprise Internship Program at the U.S. Naval Research Laboratory. The authors are appreciative of the able Captain and crew of the R/V Oceanus for enabling the successful deployment and recovery of the instrumentation used in this work.

Funding information

Julian A. Simeonov and Joseph Calantoni were supported under base funding to the U.S. Naval Research Laboratory from the Office of Naval Research. Platform support was provided by the Office of Naval Research, Code 322 Littoral Geosciences and Optics.

References

  1. Arthur RS, Fringer OB (2014) The dynamics of breaking internal solitary waves on slopes. J Fluid Mech 761:360–398.  https://doi.org/10.1017/jfm.2014.641 CrossRefGoogle Scholar
  2. Bluteau CE, Jones NL, Ivey GN (2011) Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnol Oceanogr Methods 9:302–321.  https://doi.org/10.4319/lom.2011.9.302 CrossRefGoogle Scholar
  3. Bourgault D, Morsilli M, Richards C, Neumeier U, Kelley DE (2014) Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Cont Shelf Res 72:21–33.  https://doi.org/10.1016/j.csr.2013.10.019 CrossRefGoogle Scholar
  4. Colosi JA, Kumar N, Suanda SH, et al (2017) Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J Phys Oceanogr 48:123–143.  https://doi.org/10.1175/JPO-D-17-0045.1
  5. Davis KA, Monismith SG (2011) The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J Phys Oceanogr 41:2223–2241.  https://doi.org/10.1175/2011JPO4344.1 CrossRefGoogle Scholar
  6. Dever EP, Winant CD (2002) The evolution and depth structure of shelf and slope temperatures and velocities during the 1997–1998 El Nino near Point Conception, California. Prog Oceanogr 54:77–103CrossRefGoogle Scholar
  7. Feddersen F, Trowbridge JH, Williams AJ (2007) Vertical structure of dissipation in the nearshore. J Phys Oceanogr 37:1764–1777.  https://doi.org/10.1175/JPO3098.1 CrossRefGoogle Scholar
  8. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128:117–126CrossRefGoogle Scholar
  9. Gross TF, Nowell AR (1983) Mean flow and turbulence scaling in a tidal boundary layer. Cont Shelf Res 2:109–126CrossRefGoogle Scholar
  10. Helfrich KR, Melville WK (2006) Long nonlinear internal waves. Annu Rev Fluid Mech 38:395–425CrossRefGoogle Scholar
  11. Howard RJA, Serre E (2015) Large-eddy simulation in a mixing tee junction: high-order turbulent statistics analysis. Int J Heat Fluid Flow 51:65–77.  https://doi.org/10.1016/j.ijheatfluidflow.2014.11.009 CrossRefGoogle Scholar
  12. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589CrossRefGoogle Scholar
  13. Lamb KG (2014) Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu Rev Fluid Mech 46:231–254.  https://doi.org/10.1146/annurev-fluid-011212-140701 CrossRefGoogle Scholar
  14. Leichter JJ, Wing SR, Miller SL, Denny MW (1996) Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol Oceanogr 41:1490–1501CrossRefGoogle Scholar
  15. Madsen OS (1994) Spectral wave-current bottom boundary layer flows. Coast Eng 94:384–397Google Scholar
  16. McDougall TJ, Barker PM (2011) Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127Google Scholar
  17. McMillan JM, Hay AE (2017) Spectral and structure function estimates of turbulence dissipation rates in a high-flow tidal channel using broadband ADCPs. J Atmos Ocean Technol 34:5–20CrossRefGoogle Scholar
  18. Moum JN, Farmer DM, Shroyer EL, Smyth WD, Armi L (2007a) Dissipative losses in nonlinear internal waves propagating across the continental shelf. J Phys Oceanogr 37:1989–1995.  https://doi.org/10.1175/JPO3091.1 CrossRefGoogle Scholar
  19. Moum JN, Klymak JM, Nash JD, Perlin A, Smyth WD (2007b) Energy transport by nonlinear internal waves. J Phys Oceanogr 37:1968–1988.  https://doi.org/10.1175/JPO3094.1 CrossRefGoogle Scholar
  20. Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res Part Oceanogr Res Pap 45:1977–2010CrossRefGoogle Scholar
  21. Ölçmen SM, Simpson RL (2008) Experimental transport-rate budgets in complex 3-D turbulent flow near a wing/body junction. Int J Heat Fluid Flow 29:874–890.  https://doi.org/10.1016/j.ijheatfluidflow.2007.12.004 CrossRefGoogle Scholar
  22. Omand MM, Leichter JJ, Franks PJS, Guza RT, Lucas AJ, Feddersen F (2011) Physical and biological processes underlying the sudden surface appearance of a red tide in the nearshore. Limnol Oceanogr 56:787–801.  https://doi.org/10.4319/lo.2011.56.3.0787 CrossRefGoogle Scholar
  23. Pineda J (1994) Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J Mar Res 52:427–458.  https://doi.org/10.1357/0022240943077046 CrossRefGoogle Scholar
  24. Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Reidenbach MA, Monismith SG, Koseff JR, Yahel G, Genin A (2006) Boundary layer turbulence and flow structure over a fringing coral reef. Limnol Oceanogr 51:1956–1968CrossRefGoogle Scholar
  26. Reynolds WC, Hussain AKMF (1972) The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J Fluid Mech 54:263–288.  https://doi.org/10.1017/S0022112072000679 CrossRefGoogle Scholar
  27. Sanford TB, Lien RC (1999) Turbulent properties in a homogeneous tidal bottom boundary layer. J Geophys Res Oceans 104:1245–1257.  https://doi.org/10.1029/1998JC900068 CrossRefGoogle Scholar
  28. Shaw WJ, Trowbridge JH (2001) The direct estimation of near-bottom turbulent fluxes in the presence of energetic wave motions. J Atmos Ocean Technol 18:1540–1557.  https://doi.org/10.1175/1520-0426(2001)018<1540:TDEONB>2.0.CO;2 CrossRefGoogle Scholar
  29. Shaw WJ, Trowbridge JH, Williams AJ (2001) Budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. J Geophys Res-Oceans 106:9551–9564.  https://doi.org/10.1029/2000JC000240 CrossRefGoogle Scholar
  30. Sherwood CR, Lacy JR, Voulgaris G (2006) Shear velocity estimates on the inner shelf off Grays Harbor, Washington, USA. Cont Shelf Res 26:1995–2018.  https://doi.org/10.1016/j.csr.2006.07.025 CrossRefGoogle Scholar
  31. Trowbridge JH, Geyer WR, Bowen MM, Williams AJ III (1999) Near-bottom turbulence measurements in a partially mixed estuary: turbulent energy balance, velocity structure, and along-channel momentum balance*. J Phys Oceanogr 29:3056–3072CrossRefGoogle Scholar
  32. Walter RK, Woodson CB, Arthur RS, et al (2012) Nearshore internal bores and turbulent mixing in southern Monterey Bay: internal bores and turbulent mixing. J Geophys Res Oceans 117.  https://doi.org/10.1029/2012JC008115
  33. Walter RK, Squibb ME, Woodson CB, Koseff JR, Monismith SG (2014) Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J Geophys Res Oceans 119:8709–8730.  https://doi.org/10.1002/2014JC010396 CrossRefGoogle Scholar
  34. Wiberg PL, Sherwood CR (2008) Calculating wave-generated bottom orbital velocities from surface-wave parameters. Comput Geosci 34:1243–1262.  https://doi.org/10.1016/j.cageo.2008.02.010 CrossRefGoogle Scholar
  35. Wiles PJ, Rippeth TP, Simpson JH, Hendricks PJ (2006) A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys Res Lett 33:L21608.  https://doi.org/10.1029/2006GL027050 CrossRefGoogle Scholar
  36. Yakovenko SN (2011) Second- and third-order moment budgets in a turbulent patch resulting from internal gravity wave breaking. J Phys Conf Ser 318:072022.  https://doi.org/10.1088/1742-6596/318/7/072022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rachel M. Allen
    • 1
  • Julian A. Simeonov
    • 2
  • Joseph Calantoni
    • 2
  • Mark T. Stacey
    • 1
  • Evan A. Variano
    • 1
  1. 1.Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Marine Geosciences DivisionU.S. Naval Research LaboratoryStennis Space CenterUSA

Personalised recommendations