Advertisement

Ocean Dynamics

, Volume 62, Issue 2, pp 213–226 | Cite as

Ocean response to strong precipitation events in the Gulf of Lions (northwestern Mediterranean Sea): a sensitivity study

  • Cindy Lebeaupin BrossierEmail author
  • Karine Béranger
  • Philippe Drobinski
Article

Abstract

The Mediterranean Sea is a region of intense air–sea interactions, with in particular strong evaporation over sea which drives the thermohaline circulation. The Mediterranean region is also prone to strong precipitation events characterized by low spatial extent, short duration, and high temporal variability. The impacts of intense offshore precipitation over sea, in the Gulf of Lions which is a spot for winter deep convection, are investigated using four sensitivity simulations performed at mesoscale resolution with the eddy-resolving regional ocean model NEMO-MED12. We use various atmospheric fields to force NEMO-MED12, downscaled from reanalyses with the non-hydrostatic mesoscale Weather Research and Forecasting model but differing in space resolutions (20 and 6.7 km) or in time frequencies (daily and three-hourly). This numerical study evidences that immediate, intense, and rapid freshening occurs under strong precipitation events. The strong salinity anomaly induced extends horizontally (≃50 km) as vertically (down to 50 m) and persists several days after strong precipitation events. The change in the space resolution of the atmospheric forcing modifies the precipitating patterns and intensity, as well as the shape and the dynamics of the low-salinity layer formed are changed. With higher forcing frequency, shorter and heavier precipitation falls in the ocean in the center of the Gulf of Lions, and due to a stronger vertical shear and mixing, the low-salinity anomaly propagates deeper.

Keywords

Strong precipitation Mediterranean Sea Stratification Resolution impact 

Notes

Acknowledgements

This work is a contribution to the MORCE-MED project funded by the GIS (Groupement d’Intérêt Scientifique) “Climat, Environnement et Société, with granted access to the HPC resources of IDRIS (under allocation i2009010227). The authors are grateful to Charles Deltel (LOCEAN, INRIA), Romain Bourdallé-Badie, and Jonathan Beuvier (Mercator-Ocean) for their useful help about the MED12 model. Finally, the authors would like to thank the two anonymous reviewers that help us to deeply improve this paper.

References

  1. Barnier B, Madec G, Penduff T, Molines J-M, Tréguier A-M, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Rémy E, Talandier C, Theetten S, Maltrud ME, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5–6):543–567. doi: 10.1007/s10236-006-0082-1 Google Scholar
  2. Béranger K, Drillet Y, Houssais M-N, Testor P, Bourdalle-Badie R, Alhammoud B, Bozec A, Mortier L, Bouruet-Aubertot P, Crépon M (2010) Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea. J Geophys Res 115:C12041. doi: 10.1029/2009JC005648 CrossRefGoogle Scholar
  3. Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability during 1961-2000: focus on the Eastern Mediterranean Transient (EMT). J Geophys Res 115:C08517. doi: 10.1029/2009JC005850 CrossRefGoogle Scholar
  4. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  5. Canals M, Puig P, Durrieu de Madron X, Heussner S, Palanques A, Fabras J (2006) Flushing submarine canyons. Nature 444:354–357CrossRefGoogle Scholar
  6. Craig PD, Banner ML (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Ocean 24(12):2546–2559CrossRefGoogle Scholar
  7. Drobinski P, Flamant C, Dusek J, Flamant PH, Pelon J (2001) Observational evidence and modeling of an internal hydraulic jump at the atmospheric boundary layer top during a tramontane event. Boundary Layer Meteorol 98:497–515CrossRefGoogle Scholar
  8. Drobinski P, Bastin S, Guénard V, Caccia J-L, Dabas AM, Delville P, Protat A, Reitebuch O, Werner C (2005) Summer mistral at the exit of the Rhône valley. Q J Roy Meteorol Soc 131:353–375CrossRefGoogle Scholar
  9. Drobinski P, Anav A, Lebeaupin Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, De Noblet-Ducoudré N, Diaz F, Dutay J-C, Ethé C, Foujols M-A, Khvorostiyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2011) Model of the regional earth system (MORCE): application to process and climate studies in vulnerable regions. Environ Model Softw (submitted)Google Scholar
  10. Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Thouvenin T (2008) A numerical study of three catastrophic precipitating events over Western Mediterranean region (Southern France). Part II: mesoscale triggering and stationarity factors. Q J Royal Meteorol Soc 134:131–145CrossRefGoogle Scholar
  11. Gomes JL, Chou SC (2010) Dependence of partitioning of model implicit and explicit precipitation on horizontal resolution. Meteorol Atmos Phys 106:1–18CrossRefGoogle Scholar
  12. Guénard V, Drobinski P, Caccia J-L, Campistron B, Bénech B (2005) Observational study of the mistral mesoscale dynamics. Bound Lay Meteorol 115(2):263–288CrossRefGoogle Scholar
  13. Guénard V, Drobinski P, Caccia J-L, Tedeschi G, Currier P (2006) Dynamics of the MAP IOP15 severe mistral event: observations and high-resolution numerical simulations. Q J R Meteorol Soc 132:757–777CrossRefGoogle Scholar
  14. Hong SY, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  15. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  16. Krinner G, Viovy N, De Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Colin Prentice I (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles 19:1–33CrossRefGoogle Scholar
  17. Lebeaupin Brossier C, Drobinski P (2009) Numerical high-resolution air–sea coupling over the Gulf of Lions during two tramontane/mistral events. J Geophys Res 114:D10110. doi: 10.1029/2008JD011601 CrossRefGoogle Scholar
  18. Lebeaupin Brossier C, Ducrocq V, Giordani H (2009a) Two-way 1D high-resolution air–sea coupled modeling applied to Mediterranean heavy rain events. Q J Royal Meteorol Soc 135:187–204CrossRefGoogle Scholar
  19. Lebeaupin Brossier C, Ducrocq V, Giordani H (2009b) Effects of the air–sea coupling time frequency on the ocean response during Mediterranean intense events. Ocean Dyn 59(4):539–549. doi: 10.1007/s10236–009-0198-1 CrossRefGoogle Scholar
  20. Lebeaupin Brossier C, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean Sea response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Modell 36(1–2):1–25CrossRefGoogle Scholar
  21. Levitus S, Antonov JI, Boyer TP (2005) Warming of the world ocean. Geophys Res Lett 32:L02604. doi: 10.1029/2004GL021592 CrossRefGoogle Scholar
  22. Li X, Sui C-H, Adamec D, Lau K-M (1998) Impacts of precipitation in the upper ocean in the western Pacific warm pool during TOGA-COARE. J Geophys Res 103(C3):5347–5359CrossRefGoogle Scholar
  23. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, no 27, ISSN no 1288–1619Google Scholar
  24. Marshall J, Schott F (1999) Open-ocean convection: observations, theory and models. Rev Geophys 37:1–64CrossRefGoogle Scholar
  25. Nuissier O, Ducrocq V, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over Western Mediterranean region (Southern France). Part I: numerical framework and synoptic ingredients. Q J Royal Meteorol Soc 134:111–130CrossRefGoogle Scholar
  26. Romanou A, Tselioudis G, Zerefos CS, Clayson C-A, Curry JA, Andersson A (2010) Evaporation–precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Climate 23:5268–5287CrossRefGoogle Scholar
  27. Roullet G, Madec G (2000) Salt conservation, free surface and varying volume: a new formulation for ocean GCMs. J Geophys Res 105:23927–23942CrossRefGoogle Scholar
  28. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 ppGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Cindy Lebeaupin Brossier
    • 1
    • 2
    Email author
  • Karine Béranger
    • 2
  • Philippe Drobinski
    • 1
  1. 1.Laboratoire de Météorologie Dynamique (CNRS/Ecole Polytechnique/ENS/UPMC)Institut Pierre Simon LaplacePalaiseauFrance
  2. 2.Unité de MécaniqueÉcole Nationale Supérieure de Techniques Avancées (ENSTA)—ParisTechPalaiseauFrance

Personalised recommendations