The sharp higher-order Lorentz–Poincaré and Lorentz–Sobolev inequalities in the hyperbolic spaces


In this paper, we study the sharp Poincaré inequality and the Sobolev inequalities in the higher-order Lorentz–Sobolev spaces in the hyperbolic spaces. These results generalize the ones obtained in Nguyen VH (J Math Anal Appl, 490(1):124197, 2020) to the higher-order derivatives and seem to be new in the context of the Lorentz–Sobolev spaces defined in the hyperbolic spaces.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A (5) 14(1), 148–156 (1977)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    Article  Google Scholar 

  3. 3.

    Baernstein, A. II.: A unified approach to symmetrization. In: Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., XXXV, pages 47–91. Cambridge Univ. Press, Cambridge (1994)

  4. 4.

    Benguria, R.D., Frank, R.L., Loss, M.: The sharp constant in the Hardy–Sobolev–Maz’ya inequality in the three dimensional upper half-space. Math. Res. Lett. 15(4), 613–622 (2008)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

  6. 6.

    Berchio, E., D’Ambrosio, L., Ganguly, D., Grillo, G.: Improved \(L^p\)-Poincaré inequalities on the hyperbolic space. Nonlinear Anal. 157, 146–166 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Berchio, E., Ganguly, D., Grillo, G.: Sharp Poincaré–Hardy and Poincaré–Rellich inequalities on the hyperbolic space. J. Funct. Anal. 272(4), 1661–1703 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cassani, D., Ruf, B., Tarsi, C.: Equivalent and attained version of Hardy’s inequality in \({\mathbb{R}}^{n}\). J. Funct. Anal. 275(12), 3303–3324 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L_p(\Omega )\). Math. Z. 227(3), 511–523 (1998)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hong, Q.: Sharp constant in third-order Hardy–Sobolev–Maz’ya inequality in the half space of dimension seven. Int. Math. Res. Not. IMRN, in press (2019)

  11. 11.

    Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. of Math. (2) 118(2), 349–374 (1983)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lu, G., Yang, Q.: Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy–Sobolev–Maz’ya inequalities on half spaces. preprint, arXiv:1903.10365 (2019)

  13. 13.

    Lu, G., Yang, Q.: Paneitz operators on hyperbolic spaces and high order Hardy–Sobolev–Maz’ya inequalities on half spaces. Amer. J. Math. 141(6), 1777–1816 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mancini, G., Sandeep, K.: On a semilinear elliptic equation in \({\mathbb{H}}^{n}\). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(4), 635–671 (2008)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Masmoudi, N., Sani, F.: Higher order Adams’ inequality with the exact growth condition. Commun. Contemp. Math. 20(6), 1750072 (2018). (33)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ngô, Q.A., Nguyen, V.H.: Sharp constant for Poincaré-type inequalities in the hyperbolic space. Acta Math. Vietnam. 44(3), 781–795 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nguyen, V.H.: Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on half-spaces via mass transport and consequences. Proc. Lond. Math. Soc. (3) 111(1), 127–148 (2015)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Nguyen, V.H.: The sharp Poincaré-Sobolev type inequalities in the hyperbolic spaces \({\mathbb{H}}^{n}\). J. Math. Anal. Appl. 462(2), 1570–1584 (2018)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Nguyen, V.H.: Second order Sobolev type inequalities in the hyperbolic spaces. J. Math. Anal. Appl. 477(2), 1157–1181 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Nguyen, V.H.: The sharp Adams type inequalities in the hyperbolic spaces under the Lorentz-Sobolev norms. preprint, arXiv:2020.04017 (2020)

  21. 21.

    Nguyen, V.H.: The sharp Sobolev type inequalities in the Lorentz–Sobolev spaces in the hyperbolic spaces. J. Math. Anal. Appl. 490(1), 124197 (2020). (21)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4(110), 353–372 (1976)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Tarsi, C.: Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces. Potential Anal. 37(4), 353–385 (2012)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Tataru, D.: Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Am. Math. Soc. 353(2), 795–807 (2001)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Van Hoang Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V. The sharp higher-order Lorentz–Poincaré and Lorentz–Sobolev inequalities in the hyperbolic spaces. Annali di Matematica (2021).

Download citation


  • Poincaré inequality
  • Poincaré–Sobolev inequality
  • Lorentz–Sobolev space
  • Hyperbolic space

Mathematics Subject Classification

  • 26D10
  • 46E35
  • 46E30