On the characterization of the space of derivations in evolution algebras


We study the space of derivations for some finite-dimensional evolution algebras, depending on the twin partition of an associated directed graph. For evolution algebras with a twin-free associated graph, we prove that the space of derivations is zero. For the remaining families of evolution algebras, we obtain sufficient conditions under which the study of such a space can be simplified. We accomplish this task by identifying the null entries of the respective derivation matrix. Our results suggest how strongly the associated graph’s structure impacts in the characterization of derivations for a given evolution algebra. Therefore, our approach constitutes an alternative to the recent developments in the research of this subject. As an illustration of the applicability of our results, we provide some examples and we exhibit the classification of the derivations for non-degenerate irreducible three-dimensional evolution algebras.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Alsarayreh, A., Qaralleh, I., Ahmad, M.Z.: Derivation of three dimensional evolution algebra. JP J. Algebra Number Theory Appl. 39(4), 425–444 (2017)

    MATH  Google Scholar 

  2. 2.

    Cabrera, Y., Siles, M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 496, 122–162 (2016)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Classification of three-dimensional evolution algebras. Linear Algebra Appl. 524, 68–108 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cadavid, P., Rodiño Montoya, M.L., Rodriguez, P.M.: The connection between evolution algebras, random walks, and graphs. J. Algebra Appl. 19(2), 2050023 (2020)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cadavid, P., Rodiño Montoya, M.L., Rodriguez, P.M.: On the isomorphisms between evolution algebras of graphs and random walks. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1645807

    Article  MATH  Google Scholar 

  6. 6.

    Cadavid, P., Rodiño Montoya, M.L., Rodriguez, P.M.: Characterization theorems for the spaces of derivations of evolution algebras associated to graphs. Linear Multilinear Algebra (2018). https://doi.org/10.1080/03081087.2018.1541962

    Article  Google Scholar 

  7. 7.

    Camacho, L.M., Gómez, J.R., Omirov, B.A., Turdibaev, R.M.: Some properties of evolution algebras. Bull. Korean Math. Soc. 50(5), 1481–1494 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Camacho, L.M., Gómez, J.R., Omirov, B.A., Turdibaev, R.M.: The derivations of some evolution algebras. Linear Multilinear Algebra 61, 309–322 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Cardoso, M.I., Gonçalves, D., Martín, D., Martín, C., Siles, M.: Squares and associative representations of two dimensional evolution algebras. J. Algebra Appl. (2020). https://doi.org/10.1142/S0219498821500900

    Article  Google Scholar 

  10. 10.

    Casas, J.M., Ladra, M., Omirov, B.A., Rozikov, U.A.: On nilpotent index and dibaricity of evolution algebras. Linear Algebra Appl. 439(1), 90–105 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Casas, J.M., Ladra, M., Rozikov, U.A.: A chain of evolution algebras. Linear Algebra Appl. 435(4), 852–870 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Costa, R.: On the derivations of gametic algebras for polyploidy with multiple alleles. Bol. Soc. Brasil. Mat. 13(2), 69–81 (1982)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Costa, R.: On the derivation algebra of zygotic algebras for polyploidy with multiple alleles. Bol. Soc. Brasil. Mat. 14(1), 63–80 (1983)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Elduque, A., Labra, A.: Evolution algebras and graphs. J. Algebra Appl. 14, 1550103 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1598931

    Article  MATH  Google Scholar 

  16. 16.

    Falcón, O.J., Falcón, R.M., Nuñez, J.: Algebraic computation of genetic patterns related to three-dimensional evolution algebras. Appl. Math. Comput. 319, 510–517 (2018)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Gonshor, H.: Derivations in genetic algebras. Commun. Algebra 16(8), 1525–1542 (1988)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gonzalez, S., Martinez, C.: Bernstein algebras with zero derivation algebra. Linear Algebra Appl. 191, 235–244 (1993)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Holgate, P.: The interpretation of derivations in genetic algebras. Linear Algebra Appl. 85, 75–79 (1987)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Mukhamedov, F., Qaralleh, I.: On derivations of genetic algebras. J. Phys.: Conf. Ser. 553, 012004 (2014)

    Google Scholar 

  21. 21.

    Mukhamedov, F., Khakimov, O., Omirov, B., Qaralleh, I.: Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. J. Algebra Appl. 18(12), 1950233 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Paniello, I.: Evolution coalgebras. Linear Multilinear Algebra 67(8), 1539–1553 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Peresi, L.A.: The derivation algebra of gametic algebra for linked loci. Math. Biosci. 91(2), 151–156 (1988)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Tian, J.P.: Evolution Algebras and Their Applications. Springer, Berlin (2008)

    Google Scholar 

  25. 25.

    Tian, J.P.: Invitation to Research of New Mathematics from Biology: Evolution Algebras. Topics in Functional Analysis and Algebra. Contemporary Mathematics, vol. 672, pp. 257–272. Amer. Math. Soc., Providence (2016)

    Google Scholar 

  26. 26.

    Tian, J.P., Vojtechovsky, P.: Mathematical concepts of evolution algebras in non-Mendelian genetics. Quasigroups Relat. Syst. 1(14), 111–122 (2006)

    MathSciNet  MATH  Google Scholar 

Download references


Part of this work was carried out during a visit of Y.C., M.L.R and P.M.R. at the Universidade Federal do ABC—UFABC in Santo André, SP, Brazil. They are grateful for their hospitality and support. The authors also thank the Fundação Getulio Vargas—FGV, Rio de Janeiro, RJ, Brazil, host organization of the ILAS 2019 conference, for their hospitality. Special thanks are also due to the anonymous reviewer for his/her helpful comments and suggestions.

Author information



Corresponding author

Correspondence to Pablo M. Rodriguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Grants 2016/11648-0, 2017/10555-0, 2018/06925-0), and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant 304676/2016-0).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cabrera Casado, Y., Cadavid, P., Rodiño Montoya, M. et al. On the characterization of the space of derivations in evolution algebras. Annali di Matematica (2020). https://doi.org/10.1007/s10231-020-01012-2

Download citation


  • Genetic algebra
  • Evolution algebra
  • Derivation
  • Graph
  • Twin partition

Mathematics Subject Classification

  • 17A36
  • 05C25
  • 17D92