Three-dimensional homogeneous critical metrics for quadratic curvature functionals


We show the existence of non-Einstein homogeneous critical metrics for any quadratic curvature functional in dimension three.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Ambrose, W., Singer, I.M.: On homogeneous Riemannian manifolds. Duke Math. J. 25, 647–669 (1958)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Berger, M.: Quelques formules de variation pour une structure riemannienne. Ann. Sci. École Norm. Sup. 3(4), 285–294 (1970)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une Variété riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

    Google Scholar 

  4. 4.

    Catino, G.: Some rigidity results on critical metrics for quadratic functionals. Calc. Var. Partial Differ. Equ. 54(3), 2921–2937 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Catino, G., Mastrolia, P., Monticelli, D.D.: A variational characterization of flat spaces in dimension three. Pac. J. Math. 282, 285–292 (2016)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gadea, P.M., González-Dávila, J.C., Oubiña, J.A.: Cyclic metric Lie groups. Monatsh. Math. 176, 219–239 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gray, A.: The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J. 20, 329–344 (1973)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Gursky, M.J., Viaclovsky, J.A.: A new variational characterization of \(3\)-dimensional space forms. Invent. Math. 145, 251–278 (2001)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hu, Z., Nishikawa, S., Simon, U.: Critical metrics of the Schouten functional. J. Geom. 98, 91–113 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Lamontagne, F.: A critical metric for the \(L^2\)-norm of the curvature tensor on \({\mathbb{S}}^3\). Proc. Am. Math. Soc. 126, 589–593 (1998)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Meeks, W., Pérez, J.: Constant mean curvature surfaces in metric Lie groups, Geometric analysis: partial differential equations and surfaces. Contemp. Math. 570, 25–110 (2012)

    Article  Google Scholar 

  13. 13.

    Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kim, Y.-T., Park, H.-S.: Mean distance of Brownian motion on a Riemannian manifold. Stochastic Process Appl. 102, 117–138 (2002)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Sekigawa, K.: A note on deformations of Riemannian metrics on \(3\)-dimensional manifolds. Tensor (N.S.) 31, 103–106 (1977)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Sekigawa, K.: On some \(3\)-dimensional curvature homogeneous spaces. Tensor (N.S.) 31, 87–97 (1977)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Tanno, S.: Deformations of Riemannian metrics on \(3\)-dimensional manifolds. Tohoku Math. J. (2) 27, 437–444 (1975)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. García-Río.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by projects MTM2016-75897-P, and ED431C 2019/10 with FEDER Funds (Spain).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brozos-Vázquez, M., García-Río, E. & Caeiro-Oliveira, S. Three-dimensional homogeneous critical metrics for quadratic curvature functionals. Annali di Matematica (2020).

Download citation


  • Quadratic curvature functional
  • Critical metric
  • Homogeneous space
  • Lie group

Mathematics Subject Classification

  • 53C21
  • 53B20
  • 53C24