1 Introduction

Let R be a Noetherian ring and \(M=(f_1,\ldots ,f_n)\) be a finitely generated R-module. The symmetric algebra \({\mathrm{Sym}}(M)\) of M is a quotient ring of the polynomial ring \(R[y_1,\ldots ,y_n]\) over R. Considering this presentation, s-sequences were introduced to study the properties of symmetric algebras in [5] (cf. [7, 12]). If M is generated by an s-sequence, one obtains exact values for the dimension \({\mathrm{dim}}({\mathrm{Sym}} (M))\) and the multiplicity \(\mathrm{e}({\mathrm{Sym}} (M))\), and bounds for the depth \({\mathrm{depth}}({\mathrm{Sym}} (M))\) and the (Castelnuovo–Mumford) regularity \({{\text {reg}}} ({\mathrm{Sym}} (M))\) by the same invariants of some special quotients of R by the annihilator ideals.

Let K be a field, \(K[x_1,\ldots ,x_n]\) be a polynomial ring over K and \(\mathfrak {m}=(x_1,\ldots ,x_n)\). The first syzygy of \(\mathfrak {m}\) is denoted by \({\mathrm{Syz}}_1(\mathfrak {m})\). Our topic is the symmetric algebra \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\). In [10], the authors obtained the dimension and depth of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\). In this paper, we will continue to study the multiplicity and regularity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\).

We calculate the multiplicity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\) in Sect. 3. In order to get the regularity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\), we need to estimate the regularity of the initial ideals of certain annihilator ideals in Sect. 4, where some new results in [3] and [8] are applied. In Sect. 5, an upper bound for the regularity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\) is given. When \(n\le 5\), using Buchberger’s algorithm, we find a set of minimal generators for the second syzygy module of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\). The degrees of these generators give a lower bound for the regularity. Then we obtain an equality for the regularity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\) provided \(n\le 5\).

2 Preliminaries

Let R be a Noetherian ring and \(M=(f_1,\ldots ,f_n)\) be a finitely generated R-module. Then M has a presentation

$$\begin{aligned} R^m \longrightarrow R^n \longrightarrow M \longrightarrow 0 \end{aligned}$$

with a relation matrix \(A = (a_{ij})_{m\times n}\). The symmetric algebra \({\mathrm{Sym}}(M)\) has the presentation

$$\begin{aligned} R[y_1, \ldots , y_n]/J, \end{aligned}$$

where \(J = (g_1, \ldots , g_m)\) and \(g_i = \sum _{j=1}^n a_{ij}y_j\), \(i = 1, \ldots , m\).

Let \(P = R[y_1, \ldots ,y_n]\) which is a graded R-algebra. Then J is a graded ideal, and \({\mathrm{Sym}}(M)\) is a graded R-algebra. Assign degree one to each variable \(y_i\) and degree zero to the elements of R. Let < be a monomial order induced by \(y_1< \cdots < y_n\). For any \(f \in P\), \(f= \sum _\alpha a_\alpha y^\alpha \), we put in\((f) = a_\alpha y^\alpha \) where \(y^\alpha \) is the largest monomial with respect to the given order such that \(a_\alpha \ne 0\). We call in(f) the initial term of f and define the ideal

$$\begin{aligned} \text {in}(J) = (\text {in}(f) : f \in J), \end{aligned}$$

which is generated by monomials in \(y_1, \ldots , y_n\) with coefficients in R and is finitely generated since P is Noetherian.

For \(i = 1, \ldots , n\), we set \(M_i = \sum _{j=1}^i Rf_j\) and let \(I_i = M_{i-1}:_R f_i = \{a \in R : af_i \in M_{i-1}\}\). We also set \(I_0 = 0\). Then \(I_i\) is the annihilator ideal of the cyclic module \(M_i/M_{i-1}\). It is clear that

$$\begin{aligned} (I_1y_1, \ldots , I_ny_n) \subseteq \text {in}(J), \end{aligned}$$

and the two ideals coincide in degree one.

Definition 2.1

The generators \(f_1, \ldots , f_n\) of M are called an s-sequence (with respect to <), if

$$\begin{aligned} (I_1y_1, \ldots , I_ny_n) = \text {in}(J). \end{aligned}$$

If, in addition, \(I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n\), then \(f_1, \ldots , f_n\) is called a strong s-sequence.

Let \(S=K[x_1,\ldots ,x_d]\) be a polynomial ring over a field K and M a finitely generated graded S-module. Let

$$\begin{aligned} \cdots \rightarrow F_j{\mathop {\rightarrow }\limits ^{\phi _j}}\cdots \rightarrow F_1{\mathop {\rightarrow }\limits ^{\phi _1}} F_0\rightarrow M\rightarrow 0 \end{aligned}$$

be a graded minimal free resolution of M, where \(F_j=\oplus _iS(-a_{ji})\). \({\mathrm{Im}}(\phi _j)\) is called the j-th syzygy module of M. One says that M is m-regular if \(a_{ji}-j\le m\) for all ij and defines the Castelnuovo–Mumford regularity (or regularity) of M by

$$\begin{aligned} {\mathrm{reg}}(M)={\mathrm{min}}\{m:\, M \text{ is } m\text{-regular }\}. \end{aligned}$$

Let J be a graded ideal of S. Notice that the i-th syzygy of J is just the \((i+1)\)-th syzygy of S / J. It follows that \({\mathrm{reg}}(J)={\mathrm{reg}}(S/J)+1\). On the other hand, if g is a minimal generator of J, then \({\mathrm{reg}}(J)\ge {\mathrm{deg}}(g)\), and if h is a minimal generator of the first syzygy module of J, which is the second syzygy module of S / J, then \({\mathrm{reg}}(J)\ge {\mathrm{deg}}(h)-1\), and so on. For the properties of the regularity, we refer to [1].

Lemma 2.2

([5, Propositions 2.4 and 2.6]) Suppose that \(f_1,\ldots ,f_n\) form a strong s-sequence and have the same degree. Let \(d={\mathrm{dim}}({\mathrm{Sym}}(M))\). Then

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}(M))=\sum _{r\ge 0, {\mathrm{dim}}(R/I_r)=d-r}\mathrm{e}(R/I_r), \end{aligned}$$

and

$$\begin{aligned} {\mathrm{reg}}({\mathrm{Sym}}(M))\le {\mathrm{max}}\{{\mathrm{reg}}(I_r): r=1,\ldots ,n\}. \end{aligned}$$

Assume from now on that \(n\ge 3\). Let K be a field, \(S = K[x_1, \ldots , x_n]\) be a polynomial ring and \(\mathfrak {m}= (x_1, \ldots , x_n)\) be the graded maximal ideal of S. Denote the first syzygy of \(\mathfrak {m}\) by \({\mathrm{Syz}}_1(\mathfrak {m})\). From the Koszul complex of S with respect to \(x_1,\ldots ,x_n\), one has a presentation of \({\mathrm{Syz}}_1(\mathfrak {m})\) as an S-module

$$\begin{aligned} S^{\left( {\begin{array}{c}n\\ 3\end{array}}\right) } \longrightarrow S^{\left( {\begin{array}{c}n\\ 2\end{array}}\right) } \longrightarrow {\mathrm{Syz}}_1(\mathfrak {m}) \longrightarrow 0. \end{aligned}$$

It follows that the symmetric algebra of \({\mathrm{Syz}}_1(\mathfrak {m})\) has the presentation

$$\begin{aligned} {\mathrm{Sym}}_S({\mathrm{Syz}}_1(\mathfrak {m})) = S[y_{ij}: 1\le i<j\le n]/J, \end{aligned}$$

where J is the ideal of \(S[y_{ij}: 1\le i<j\le n]\) generated by the set

$$\begin{aligned} \left\{ x_i y_{jk} - x_j y_{ik} + x_k y_{ij}: 1 \le i< j < k \le n\right\} . \end{aligned}$$

Since the generators of \({\mathrm{Syz}}_1(\mathfrak {m})\) do not form an s-sequence in general with respect to the term order \(x_i<y_{12}<y_{13}<\cdots <y_{n-1,n}\), we cannot apply the theory of s-sequences in this form. However, the Jacobian dual of \({\mathrm{Syz}}_1(\mathfrak {m})\) can help us.

Let \(Q=K[y_{ij}:1\le i<j\le n]\). Then the Jacobian dual \({\mathrm{Syz}}_1(\mathfrak {m})^{\vee }\) of \({\mathrm{Syz}}_1(\mathfrak {m})\) is a Q-module with a presentation

$$\begin{aligned} Q^{\left( {\begin{array}{c}n\\ 3\end{array}}\right) } \longrightarrow Q^n \longrightarrow {\mathrm{Syz}}_1(\mathfrak {m})^{\vee } \longrightarrow 0, \end{aligned}$$

and

$$\begin{aligned} {\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\cong {\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})^{\vee })\cong Q[x_1,\ldots ,x_n]/J, \end{aligned}$$

cf. [11]. We will use this new presentation of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\) to estimate its multiplicity and regularity.

Lemma 2.3

([7, Lemma 3.1 and Proposition 3.3]) Let \(Y=(y_{ij})_{n\times n}\) be the skew-symmetric matrix where \(y_{ij}=-y_{ji}\) and \(y_{ii}=0\). Then the set

$$\begin{aligned} \{x_iy_{jk}-x_jy_{ik}+x_ky_{ij}:1\le i<j<k\le n\}\cup \{x_rP_2(Y):1\le r\le n\} \end{aligned}$$

is a Gröbner basis of J with respect to the term order

$$\begin{aligned} x_n>x_{n-1}>\cdots>x_1>y_{1n}>y_{1,n-1}>\cdots>y_{12}>y_{2n}>y_{2,n-1}>\cdots >y_{n-1,n}, \end{aligned}$$

where \(P_2(Y)\) is the set of all 4-Pfaffians of Y.

Let \(x_i^*\) be the image of \(x_i\) in \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\), \(i = 1, \ldots , n\). Then \(x_1^*,\ldots , x_n^*\) is a strong s-sequence with the annihilator ideal

$$\begin{aligned} I_r= & {} (\{y_{ij}:1\le i< j< r\}\cup P_2(Y))\\= & {} (\{y_{ij}: 1\le i< j< r\}\cup \{ y_{il}y_{jk}-y_{ik}y_{jl}+y_{ij}y_{kl}:1\le i< j< k <\ell \le n\}),\\&r=1,\ldots ,n, \end{aligned}$$

which are ideals of Q.

Notice that \(I_1=I_2\), and when \(n=3\), \(I_1=I_2=0\).

Then, by Lemma 2.2,

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=\sum _{r\ge 0, {\mathrm{dim}}(Q/I_r)=d-r}\mathrm{e}(Q/I_r), \end{aligned}$$

where \(d={\mathrm{dim}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\), and

$$\begin{aligned} {\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\le {\mathrm{max}}\{{\mathrm{reg}}(I_r): r=1,\ldots ,n\}. \end{aligned}$$

3 Multiplicity of the symmetric algebra

For the multiplicity of the symmetric algebra \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\), we have the following equalities.

Theorem 3.1

If \(n\ne 4\), then

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=1, \end{aligned}$$

and, if \(n=4\) then

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=5. \end{aligned}$$

Proof

Let \(d={\mathrm{dim}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\). Then, by [10, Theorem 4.1], \(d={\mathrm{max}}\{\frac{n(n-1)}{2},2n-1\}\). Let us calculate the multiplicity \(\mathrm{e}(Q/I_r)\) with \({\mathrm{dim}}(Q/I_r)=d-r\). Notice that \(I_1=I_2\) and, by [10, Proposition 3.4], \({\mathrm{dim}}(Q/I_r)=2n-1-r\) for \(r\ge 2\).

Firstly, suppose that \(n=3\). In this case, \(d=5\), \(I_1=I_2=0\), \(I_3=(y_{12})\) and \({\mathrm{dim}}(Q/I_3)=2=d-3\). Then

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1({\mathfrak {m}})))=\mathrm{e}(Q/I_3)=1. \end{aligned}$$

Now assume that \(n=4\). Then \(d=7\) and \({\mathrm{dim}}(Q/I_r)+r=d\) for \(r=2,3,4\). We have

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=\mathrm{e}(Q/I_2)+\mathrm{e}(Q/I_3)+\mathrm{e}(Q/I_4). \end{aligned}$$

Notice that

$$\begin{aligned} Q/I_2= & {} Q/(P_2(Y)),\\ Q/I_3= & {} K[y_{13},y_{14},y_{23},y_{24},y_{34}]/(y_{14}y_{23}-y_{13}y_{24}),\\ Q/I_4= & {} K[y_{14},y_{24},y_{34}]. \end{aligned}$$

For the multiplicity of a Pfaffian ideal, by [6, Theorem 5.6], we have the following result: If Y is a \(2r\times 2r\) generic skew matrix of indeterminates and \(R=K[Y]\), then

$$\begin{aligned} \mathrm{e}(R/(P_r(Y)))={\mathrm{det}}\left[ {2\atopwithdelims ()-i+j+1}-{2\atopwithdelims ()-i-j+1}\right] _{i,j=1,\ldots ,r-1}, \end{aligned}$$

from which we have

$$\begin{aligned} \mathrm{e}(Q/I_2)={2\atopwithdelims ()1}-{2\atopwithdelims ()-1}=2. \end{aligned}$$

For the multiplicity of a determinantal ideal, there is a well-known result (cf. [6]): If X is an \(n\times n\) generic matrix of indeterminates and \(R=K[X]\), then

$$\begin{aligned} \mathrm{e}(R/({\mathrm{det}}(X)))={\mathrm{det}}\left[ {2n-i-j\atopwithdelims ()n-i}\right] _{i,j=1,\ldots ,n-1}, \end{aligned}$$

which implies that

$$\begin{aligned} \mathrm{e}(Q/I_3)=\mathrm{e}(K[y_{13},y_{14},y_{23},y_{24}]/(y_{14}y_{23}-y_{13}y_{24}))={2\atopwithdelims ()1}=2. \end{aligned}$$

It is clear that \(\mathrm{e}(Q/I_4)=1\). Hence, in this case, \(\mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=5\).

Finally, suppose that \(n\ge 5\). Then \(d=\frac{n(n-1)}{2}\ne r+{\mathrm{dim}}(Q/I_r)\) for \(r=1,\ldots ,n\). Hence

$$\begin{aligned} \mathrm{e}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=\mathrm{e}(Q)=1. \end{aligned}$$

The proof is complete. \(\square \)

4 Regularity of annihilators

Let us estimate the regularity \({\mathrm{reg}}(I_r)\) of an annihilator ideal \(I_r\). Notice that \(Q/I_r=Q_r/I'_r\) where \(Q_r=K[y_{ij}:1\le i<j\le n,j\ge r]\) and

$$\begin{aligned} I'_r= & {} (\{y_{il}y_{jk}-y_{ik}y_{jl}:1\le i<j<r\le k<l\le n\}\\&\cup \{y_{il}y_{jk}-y_{ik}y_{jl}+y_{ij}y_{kl}:1\le i<j;r\le j<k<l\le n\}). \end{aligned}$$

Then \({\mathrm{reg}}(I_r)={\mathrm{reg}}(I'_r)\).

In [10], in order to calculate the dimension and depth of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\), the following result was proved.

Lemma 4.1

([10, Lemma 3.3 and Proposition 3.4]) \(Q_r/I'_r\) is Cohen–Macaulay of dimension \(2n-1-r\) for \(r\ge 2\) and

$$\begin{aligned} {\mathrm{in}}(I'_r)=({\mathrm{in}}(A)\,:\, A \text{ is } \text{ a } 2\text{-minor } \text{ of } Y'_r) \end{aligned}$$

with the term order

$$\begin{aligned} y_{1n}>y_{1,n-1}>\cdots>y_{12}>y_{2n}>y_{2,n-1}>\cdots>y_{23}>\cdots \cdots >y_{n-1,n}, \end{aligned}$$

where

$$\begin{aligned} Y'_r=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} y_{1r}&{}y_{1,r+1}&{}\cdots &{}y_{1n}\\ &{}\cdots &{}\cdots &{}\\ y_{r-1,r}&{}y_{r-1,r+1}&{}\cdots &{}y_{r-1,n}\\ &{}y_{r,r+1}&{}\cdots &{}y_{rn}\\ &{}&{}\cdots &{}\\ &{}&{}&{}y_{n-1,n} \end{array}\right) . \end{aligned}$$

Let \(Z_{nr}'\) be the mirror symmetry of \(Y_r'\):

$$\begin{aligned} Z'_{nr}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} z_{11}&{}z_{12}&{}\cdots &{}z_{1,n-r}&{}z_{1,n-r+1}\\ &{}&{}\cdots &{}\cdots &{}\\ z_{r-1,1}&{}z_{r-1,2}&{}\cdots &{}z_{r-1,n-r}&{}z_{r-1,n-r+1}\\ z_{r1}&{}z_{r2}&{}\cdots &{}z_{r,n-r}&{}\\ &{}&{}\cdots &{}&{}\\ \ z_{n-1,1}&{}&{}&{}&{} \end{array}\right) , \end{aligned}$$

i.e., \(z_{ij}=y_{i,n-j+1}\), and let the term order \(<'\) be as the following

$$\begin{aligned} z_{11}>'z_{12}>'\cdots>'z_{1,n-r+1}>'z_{21}>'z_{22}>'\cdots>'z_{2,n-r+1}>'\cdots \cdots >'z_{n-1,1}. \end{aligned}$$

Notice that, by changing the variables from \(y_{ij}\) to \(z_{ij}\) and the term order from < to \(<'\), \(Q_r\) and \({\mathrm{in}}(I'_r)\) remain the same. Then

$$\begin{aligned} {\mathrm{in}}(I'_r)=({\mathrm{in}}_{<'}(B)\,:\, B \text{ is } \text{ a } 2\text{-minor } \text{ of } Z'_{nr}). \end{aligned}$$

Let \(I_2(Z'_{nr})\) be the ideal of \(Q_r\) generated by all the 2-minors of \(Z'_{nr}\). Since \(Z'_{nr}\) is a ladder, by [9, Corollary 3.4], the set of 2-minors of \(Z'_{nr}\) forms a Gröbner basis. It follows that \({\mathrm{in}}(I'_r)={\mathrm{in}}_{<'}(I_2(Z'_{nr}))\).

Set \([n]=\{1,\ldots ,n\}\). Let us identify \(z_{ij}\) with its index (ij). Then \(Z'_{nr}\) is an ideal poset of \([n]\times [n]\) where \((i,j)\le (k,l)\) if and only if \(i\le k\) and \(j\le l\) (cf. [4, §9.1.2]). For any set S, denote the set of indeterminates \(x_s, s\in S\), by \(x_S\). Let \(L(2,Z'_{nr})\) be the monomial ideal of \(K[x_{[2]\times Z'_{nr}}]\) generated by the following monomials:

$$\begin{aligned} x_{1p}x_{2q},\,\, p,q\in Z'_{nr},p\le q. \end{aligned}$$

By [2, Theorem 2.4], \(L(2,Z'_{nr})\) is a Cohen–Macaulay ideal, hence, unmixed (\(L(n,Z'_{nr})\) is just \(I_{2,2}(Z'_{nr})\) with the notation of [2]). Then Theorem 4.4 of [8] claims that the regularity of \(K[x_{[2]\times Z'_{nr}}]/L(2,Z'_{nr})\) is just the maximal cardinality of an antichain in \(Z'_{nr}\), where an antichain in \(Z'_{nr}\) is a sequence of points in \(Z'_{nr}\) with the property that any two points are incomparable. From the shape of \(Z'_{nr}\), it is easy to see that this maximal cardinality is \(n-r+1\). Then, we have proved the following

Lemma 4.2

\({\mathrm{reg}}(K[x_{[2]\times Z'_{nr}}]/L(2,Z'_{nr}))=n-r+1.\)

In [3], the authors developed one method by which one gets the same regularity by cutting down a regular sequence from \(K[x_{[2]\times Z'_{nr}}]/L(2,Z'_{nr})\).

Let

$$\begin{aligned} \phi \,:\, [2]\times Z'_{nr}\rightarrow & {} [n+1]\times [n+1]\\ (1,i,j)\mapsto & {} (i,j)\\ (2,i,j)\mapsto & {} (i+1,j+1), \end{aligned}$$

and \(L^{\phi }(2,Z'_{nr})\) be the monomial ideal of \(K[x_{[n+1]\times [n+1]}]\) generated by the following monomials:

$$\begin{aligned} x_{ij}x_{i'+1,j'+1},\,\, (i,j),(i',j')\in Z'_{nr}, (i,j)\le (i',j'). \end{aligned}$$

Then, by [3, Corollary 2.3], the following result holds.

Lemma 4.3

([3, Corollary 2.3]) The quotient rings \(K[x_{[2]\times Z'_{nr}}]/L(2,Z'_{nr})\) and

\(K[x_{[n+1]\times [n+1]}]/L^{\phi }(2,Z'_{nr})\) have the same regularity.

Notice that the generators of \(L^{\phi }(2,Z'_{nr})\) are just the initial terms of the 2-minors of \(Z'_{n+2,r+1}\) (identifying \(x_{ij}\) with \(z_{ij}\)) with respect to the term order \(<'\), which form a Gröbner basis as we have noted before. It follows that \(L^{\phi }(2,Z'_{nr})={\mathrm{in}}_{<'}(I_2(Z'_{n+2,r+1}))\).

Then we have the following crucial lemma.

Lemma 4.4

For \(r=3,\ldots ,n\),

$$\begin{aligned} {\mathrm{reg}}({\mathrm{in}}_{<'}(I_2(Z'_{nr})))=n-r+1. \end{aligned}$$

Proof

It is because

$$\begin{aligned} {\mathrm{reg}}({\mathrm{in}}_{<'}(I_2(Z'_{nr})))= & {} {\mathrm{reg}}(K[x_{[n+1]\times [n+1]}]/L^{\phi }(2,Z'_{n-2,r-1}))+1\\= & {} {\mathrm{reg}}(K[x_{[2]\times Z'_{n-2,r-1}}]/L(2,Z'_{n-2,r-1}))+1\\= & {} n-r+1, \end{aligned}$$

where the last equality follows from Lemma 4.2. \(\square \)

5 Regularity of the symmetric algebra

Now, we can estimate the regularity of the symmetric algebra \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\).

Theorem 5.1

If \(n\ge 3\), then

$$\begin{aligned} {\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\le n-2. \end{aligned}$$

Proof

Notice that \(I_1=I_2\), \({\mathrm{in}}_{<'}(I_2(Z_{n2}'))={\mathrm{in}}_{<'}(I_2(Z'_{n3}))\) and

$$\begin{aligned} {\mathrm{reg}}(I_r)={\mathrm{reg}}(I'_r)\le {\mathrm{reg}}({\mathrm{in}}(I'_r))={\mathrm{reg}}({\mathrm{in}}_{<'}(I_2(Z_{nr}'))). \end{aligned}$$

Then, by Lemmas 2.2 and 4.4, we have that

$$\begin{aligned} {\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\le & {} {\mathrm{max}}\{{\mathrm{reg}}(I_r):r=2,\ldots ,n\}\\\le & {} {\mathrm{max}}\{{\mathrm{reg}}({\mathrm{in}}_{<'}(I_2(Z'_{nr}))):r=2,\ldots ,n\}\\= & {} {\mathrm{max}}\{{\mathrm{reg}}({\mathrm{in}}_{<'}(I_2(Z'_{nr}))):r=3,\ldots ,n\}\\= & {} {\mathrm{max}}\{n-r+1:r=3,\ldots ,n\}\\= & {} n-2. \end{aligned}$$

\(\square \)

The above theorem obtains an inequality for the regularity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\). We wish that the other direction’s inequality could also hold. For this purpose, let us check a graded minimal free resolution of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\). For any \(1\le i<j<k\le n\), set \(g_{ijk}=y_{ij}x_k-y_{ik}x_j+y_{jk}x_i\). Then \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))=Q[x_1,\ldots ,x_n]/J\) and J is minimally generated by \(g_{ijk}\), \(1\le i<j<k\le n\). We can construct the first two steps of a graded minimal free resolution of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\):

$$\begin{aligned} \cdots \longrightarrow \bigoplus _{1\le i<j<k\le n}Q[x_1,\ldots ,x_n]e_{ijk}(-2){\mathop {\longrightarrow }\limits ^{\phi _1}} Q[x_1,\ldots ,x_n]\longrightarrow {\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})) \longrightarrow 0, \end{aligned}$$

where \(\phi _1(e_{ijk})=g_{ijk}\). From the generators of the first syzygies of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\), i.e., \(g_{ijk}\), are all of degree 2, we see immediately from the definition of regularity that \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\ge 1\). Hence \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=n-2\) when \(n=3\). However this bound is not big enough for \(n\ge 4\). We have to consider the degrees of the minimal generators of the second syzygies of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\).

Now assume that \(n\ge 4\). In order to get that \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\ge n-2\), it is enough to find one minimal generator of \({\mathrm{Ker}}(\phi _1)\) which has degree n. Since we have found a Gröbner basis for J, it is possible, as pointed out in [1, page 335], to get a set of generators for the second syzygy module of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\) by Buchberger’s algorithm:

Lemma 5.2

(cf. [1, Theorem 15.10]) Let \(S=K[X_1,\ldots ,X_n]\) and \(g_1,\ldots ,g_s\) be a set of minimal generators of a graded ideal I of S. Suppose that \(g_1,\ldots ,g_s,g_{s+1},\ldots , g_t\) form a Gröbner basis for I with respect to a term order <. Then, for any \(1\le i<j\le t\), the S-pair

$$\begin{aligned} S(g_i,g_j):=m_{ji}g_i-m_{ij}g_j=\sum _uf_u^{(ij)}g_u,\,\, {\mathrm{in}}(f_u^{(ij)}g_u)<{\mathrm{in}}(m_{ji}g_i), \end{aligned}$$

where \(m_{ij}=\frac{{\mathrm{in}}(g_i)}{\mathrm{gcd}({\mathrm{in}}(g_i),{\mathrm{in}}(g_j))}\). Substituting \(g_{s+1},\ldots ,g_t\) in the above expressions in terms of \(g_1,\ldots ,g_s\), one has that

$$\begin{aligned} m_{ji}g_i-m_{ij}g_j=\sum _{u=1}^sh_u^{(ij)}g_u,\,\, {\mathrm{in}}(h_u^{(ij)}g_u)<{\mathrm{in}}(m_{ji}g_i), 1\le i<j\le s. \end{aligned}$$

Define an S-homomorphism

$$\begin{aligned} \phi \,:\, \bigoplus _{i=1}^sSe_i\rightarrow & {} I\\ e_i\mapsto & {} g_i. \end{aligned}$$

Set \(\tau _{ij}=m_{ji}e_i-m_{ij}e_j-\sum _{u=1}^sh_u^{(ij)}e_u\). Then the set \(\{\tau _{ij} : 1\le i<j \le s\}\) generates \({\mathrm{Ker}}(\phi )\), i.e., the first syzygy module of I.

Notice that, once a set of generators is given as above, some generator \(\tau _{i_0,j_o}\) is minimal if and only if \(\tau _{i_0,j_o}\) is not a linear combination of other generators in this set. We will use this idea to find a satisfied minimal generator.

It is clear that every element of \({\mathrm{Ker}}(\phi _1)\) is a linear combination:

$$\begin{aligned} \sum _{1\le i<j<k\le n}f_{ijk}e_{ijk},\,\, f_{ijk}\in Q[x_1,\ldots ,x_n]. \end{aligned}$$

We call \(f_{ijk}\) the coefficient of \(e_{ijk}\), which is a polynomial in variables \(x_1,\ldots ,x_n\), \(y_{ij}\), \(1\le i<j\le n\). Sometimes, we write such a linear combination as \(f_{123}e_{123}+\cdots \). Notice that the degree of \(f_{ijk}e_{ijk}\) is equal to the degree of \(f_{ijk}\) plus two. Therefore, in order to get that \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))\ge n-2\), it is enough to find one minimal homogeneous generator of \({\mathrm{Ker}}(\phi _1)\)

$$\begin{aligned} \sum _{1\le i<j<k\le n}f_{ijk}e_{ijk},\,\, f_{ijk}\in Q[x_1,\ldots ,x_n], \end{aligned}$$

where all the nonzero coefficients \(f_{ijk}\) are of degree \(n-2\). We will find such generators when \(n=4\) or 5 by using Lemma 5.2.

Theorem 5.3

When \(n=3\) or 4, or \(n=5\) and \({\mathrm{char}}(K)\ne 2\),

$$\begin{aligned} {\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))= n-2. \end{aligned}$$

Proof

We may assume that \(n\ge 4\). Define an order on \(Q[x_1,\ldots ,x_n]\) as follows

$$\begin{aligned} x_n>x_{n-1}>\cdots>x_1>y_{12}>y_{13}>\cdots>y_{23}>\cdots >y_{n-1,n}. \end{aligned}$$

Set \(P_{ijkl}^{(r)}=x_r(y_{ij}y_{kl}-y_{ik}y_{jl}+y_{il}y_{jk})\) for \(1\le i<j<k<l\le n, 1\le r\le n\). We will use the same notation for \(g_{ijk}\) and \(P_{ijkl}^{(r)}\) when ijk or ijkl are only different and not necessarily in the above order.

Let us follow the Buchberger’s algorithm to get a Gröbner basis from \(g_{ijk},\, 1\le i<j<k\le n\) and then, try to find a minimal first syzygy of degree 4 or 5 when \(n=4\) or 5. The first step is to compute S-pairs \(S(g_{ijk},g_{stl})\) where we may assume that the initial terms of \(g_{ijk}\) and \(g_{stl}\) are not co-prime. There are two possibilities: \((i,j)=(s,t), k\ne l\) or \((i,j)\ne (s,t), k=l\). In the first case, we need to compute \(S(g_{ijk},g_{ijl})\) with \(k<l\). One has

$$\begin{aligned} S(g_{ijk},g_{ijl})= & {} x_lg_{ijk}-x_kg_{ijl}\\= & {} -y_{ik}x_jx_l+y_{jk}x_ix_l+y_{il}x_jx_k-y_{jl}x_ix_k\\= & {} -x_jg_{ikl}+x_ig_{jkl}, \end{aligned}$$

which induces a generator of the first syzygy module of J:

$$\begin{aligned} x_le_{ijk}-x_ke_{ijl}+x_je_{ikl}-x_ie_{jkl}. \end{aligned}$$

Notice that this generator is of degree 3 and with coefficients in variables \(x_u\). We will see that this kind of generators would not appear in the second case. We discuss the second case according to \(n=4\) or 5.

Assume firstly that \(n=4\). Then \(S(g_{ijk},g_{stk})\) with \((i,j)\ne (s,t)\) are all the following

$$\begin{aligned} S(g_{124},g_{134})= & {} y_{13}g_{124}-y_{12}g_{134}=y_{14}g_{123}-P^{(1)}_{1234},\\ S(g_{124},g_{234})= & {} y_{23}g_{124}-y_{12}g_{234}=y_{24}g_{123}-P^{(2)}_{1234},\\ S(g_{134},g_{234})= & {} y_{23}g_{134}-y_{13}g_{234}=y_{34}g_{123}-P^{(3)}_{1234}. \end{aligned}$$

It follows that the following elements form a Gröbner basis (cf. Lemma 2.3)

$$\begin{aligned} P_{1234}^{(1)}, P_{1234}^{(2)},P_{1234}^{(3)}, g_{ijk}, 1\le i<j<k\le 4. \end{aligned}$$

Substituting \(P_{1234}^{(1)}\) and \(P_{1234}^{(2)}\) in the S-pair \(S(P_{1234}^{(1)},P_{1234}^{(2)})=x_2P_{1234}^{(1)}-x_1P_{1234}^{(2)}\), one gets that

$$\begin{aligned} (x_2y_{14}-x_1y_{24})g_{123}+(-x_2y_{13}+x_1y_{23})g_{124}+x_2y_{12}g_{134}-x_1y_{12}g_{234}=0, \end{aligned}$$

which induces to the following degree 4 syzygy:

$$\begin{aligned} (x_2y_{14}-x_1y_{24})e_{123}+(-x_2y_{13}+x_1y_{23})e_{124}+x_2y_{12}e_{134}-x_1y_{12}e_{234}. \end{aligned}$$

It is clear that this syzygy is not a multiple of the unique degree 3 syzygy \(x_4e_{123}-x_3e_{124}+x_2e_{134}-x_1e_{234}\). Therefore the above syzygy is minimal. It follows that \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))= 2\) when \(n=4\).

Now assume that \(n=5\). The possible cases for \(S(g_{ijk},g_{stk})\) with \((i,j)\ne (s,t)\) are the following

$$\begin{aligned} S(g_{125},g_{345})= & {} y_{34}g_{125}-y_{12}g_{345}=y_{35}g_{124}-y_{45}g_{123}-P_{1345}^{(2)}+P_{2345}^{(1)},\\ S(g_{135},g_{245})= & {} y_{24}g_{135}-y_{13}g_{245}=y_{25}g_{134}+y_{45}g_{123}-P_{1245}^{(3)}-P_{2345}^{(1)},\\ S(g_{145},g_{235})= & {} y_{23}g_{145}-y_{14}g_{235}=-y_{15}g_{234}+y_{45}g_{123}-P_{1245}^{(3)}+P_{1345}^{(2)}, \end{aligned}$$

and, for all \(1\le i<j<k<l\le 5\),

$$\begin{aligned} S(g_{ijl},g_{ikl})= & {} y_{ik}g_{ijl}-y_{ij}g_{ikl}=y_{il}g_{ijk}-P^{(i)}_{ijkl},\\ S(g_{ijl},g_{jkl})= & {} y_{jk}g_{ijl}-y_{ij}g_{jkl}=y_{jl}g_{ijk}-P^{(j)}_{ijkl},\\ S(g_{ikl},g_{jkl})= & {} y_{jk}g_{ikl}-y_{ik}g_{jkl}=y_{kl}g_{ijk}-P^{(k)}_{ijkl}. \end{aligned}$$

Assume that \({\mathrm{char}}(K)\ne 2\). Then from the above first three equations, we can solve \(P_{1245}^{(3)}\), \(P_{1345}^{(2)}\) and \(P_{2345}^{(1)}\):

$$\begin{aligned} P_{1245}^{(3)}= & {} \frac{1}{2}y_{45}g_{123}+\cdots ,\\ P_{1345}^{(2)}= & {} -\frac{1}{2}y_{45}g_{123}+\cdots ,\\ P_{2345}^{(1)}= & {} -\frac{1}{2}y_{45}g_{123}+\cdots . \end{aligned}$$

It follows that the following elements form a Gröbner basis (cf. Lemma 2.3)

$$\begin{aligned} P_{1245}^{(3)},P_{1345}^{(2)},P_{2345}^{(1)},P_{ijkl}^{(i)},P_{ijkl}^{(j)},P_{ijkl}^{(k)},1\le i<j<k<l\le 5, g_{ijk},1\le i<j<k\le 5. \end{aligned}$$

Notice that, as a conclusion, there are no syzygies on \(\{g_{ijk}\}\) of degree 3 with coefficients in variables \(y_{uv}\).

From

$$\begin{aligned} S\left( P_{1234}^{(2)},P_{2345}^{(2)}\right)= & {} y_{23}y_{45}P_{1234}^{(2)}-y_{12}y_{34}P_{2345}^{(2)}\\= & {} (y_{24}y_{35}-y_{25}y_{34})P_{1234}^{(2)}-(y_{13}y_{24}-y_{14}y_{23})P_{2345}^{(2)} \end{aligned}$$

and substituting \(P_{2345}^{(2)}=y_{23}g_{245}-y_{24}g_{235}+y_{25}g_{234}\) and \(P_{1234}^{(2)}=y_{24}g_{123}-y_{23}g_{124}+y_{12}g_{234}\), we get a syzygy of degree 5 with coefficients in variables \(y_{uv}\)

$$\begin{aligned} (*)\qquad \,\,\, y_{24}(y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34})e_{123}+\cdots . \end{aligned}$$

We will prove that the above syzygy \((*)\) is minimal. Then \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))= 3\) follows.

Notice that if the syzygy \((*)\) is not minimal, then \((*)\) should be a linear combination of some degree 4 syzygies whose monomials of the coefficient of \(e_{123}\) divide the monomials of \(y_{24}(y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34})\). Let us identify all such possible degree 4 syzygies. We will use the exclusive method.

The possible cases appear only in the S-pairs \(S(P_{ijkl}^{(r)},g_{uvr})\) with \((u,v)\ne (i,j)\) and (kl) or \(S(P_{ijkl}^{(r)},P_{stuv}^{(r)})\) with \((i,j)=(s,t)\) or \((k,l)=(u,v)\).

For the first case \(S(P_{ijkl}^{(r)},g_{uvr})\), r must be 3 or 4. When \(r=3\), there are only two subcases: \(S(P_{1345}^{(3)},g_{123})\) and \(S(P_{2345}^{(3)},g_{123})\). When \(r=4\), it is just \(S(P_{2345}^{(4)},g_{234})\). From

$$\begin{aligned} S\left( P_{1345}^{(3)},g_{123}\right)= & {} y_{12}P_{1345}^{(3)}-y_{13}y_{45}g_{123}\\= & {} (-y_{14}y_{45}+y_{15}y_{34})g_{123}+y_{13}P_{1345}^{(2)}-y_{23}P_{1345}^{(1)}, \end{aligned}$$

we see that this case should be excluded because \(y_{1i}\) appears in the coefficients of \(e_{123}\). However, one has that

$$\begin{aligned} S\left( P_{2345}^{(3)},g_{123}\right)= & {} y_{12}P_{2345}^{(3)}-y_{23}y_{45}g_{123}\\= & {} (-y_{24}y_{35}+y_{25}y_{34})g_{123}+y_{13}P_{2345}^{(2)}-y_{23}P_{2345}^{(1)},\\ S\left( P_{2345}^{(4)},g_{124}\right)= & {} y_{12}P_{2345}^{(4)}-y_{23}y_{45}g_{124}\\= & {} (-y_{24}y_{35}+y_{25}y_{34})g_{124}+y_{14}P_{2345}^{(2)}-y_{24}P_{2345}^{(1)}, \end{aligned}$$

from which we get two syzygies:

$$\begin{aligned}&\left( \frac{1}{2}y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34}\right) e_{123}+\cdots ,\\&\quad \frac{1}{2}y_{24}y_{45}e_{123}+\cdots . \end{aligned}$$

For the second case \(S(P_{ijkl}^{(r)},P_{stuv}^{(r)})\) with \((i,j)=(s,t)\) or \((k,l)=(u,v)\), there are six possibilities: \(S(P_{1245}^{(r)}, P_{1345}^{(r)})\) with \(r\le 4\), \(S(P_{1235}^{(r)},P_{1245}^{(r)})\) with \(r\le 3\), \(S(P_{1234}^{(r)},P_{1245}^{(r)})\) with \(r\le 3\), \(S(P_{1234}^{(r)},P_{1235}^{(r)})\) with \(r\le 3\), \(S(P_{1345}^{(r)}, P_{2345}^{(r)})\) with \(r\le 4\) and \(S(P_{1245}^{(r)},P_{2345}^{(r)})\) with \(r\le 4\).

Since

$$\begin{aligned} S\left( P_{1245}^{(r)},P_{1345}^{(r)}\right) =y_{13}P_{1245}^{(r)}-y_{12}P_{1345}^{(r)}= y_{14}P_{1235}^{(r)}-y_{15}P_{1234}^{(r)}, \end{aligned}$$

and its coefficients are all with some \(y_{1s}\), we see immediately that this possibility is excluded. Similarly for

$$\begin{aligned} S\left( P_{1235}^{(r)},P_{1245}^{(r)}\right) =y_{45}P_{1235}^{(r)}-y_{35}P_{1245}^{(r)}=y_{15}P_{2345}^{(r)}-y_{25}P_{1345}^{(r)}, \end{aligned}$$

the coefficients of \(g_{123}\) in the explains of \(y_{45}P_{1235}^{(r)}\), \(y_{35}P_{1245}^{(r)}\) and \(y_{25}P_{1345}^{(r)}\) do not divide any monomials of \(y_{24}(y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34})\) in any cases; this possibility should also be excluded. Now consider \(S(P_{1234}^{(r)},P_{1245}^{(r)})\) with \(r\le 3\). In the equality

$$\begin{aligned} S\left( P_{1234}^{(r)},P_{1245}^{(r)}\right) =y_{45}P_{1234}^{(r)}-y_{34}P_{1245}^{(r)}= -y_{24}P_{1345}^{(r)}+y_{14}P_{2345}^{(r)}, \end{aligned}$$

only when \(r=2\), \(y_{45}P_{1234}^{(r)}\) contains \(y_{24}y_{45}g_{123}\) and \(y_{24}P_{1345}^{(r)}\) contains \(-\frac{1}{2}y_{24}y_{45}g_{123}\). Thus, in this possibility, one gets only one required syzygy: \(\frac{1}{2}y_{24}y_{45}e_{123}+\cdots \).

For the two possibilities that \(S(P_{1234}^{(r)},P_{1235}^{(r)})\) with \(r\le 3\) and \(S(P_{1345}^{(r)}, P_{2345}^{(r)})\) with \(r\le 4\), in the equalities

$$\begin{aligned} S\left( P_{1234}^{(r)},P_{1235}^{(r)}\right)= & {} y_{35}P_{1234}^{(r)}-y_{34}P_{1235}^{(r)}= -y_{23}P_{1345}^{(r)}+y_{13}P_{2345}^{(r)},\\ S\left( P_{1345}^{(r)},P_{2345}^{(r)}\right)= & {} y_{23}P_{1345}^{(r)}-y_{13}P_{2345}^{(r)}= -y_{35}P_{1234}^{(r)}+y_{34}P_{1235}^{(r)}, \end{aligned}$$

only when \(r=2\), \(y_{23}P_{1345}^{(r)}\) has \(-\frac{1}{2}y_{23}y_{45}g_{123}\), \(y_{35}P_{1234}^{(r)}\) has \(y_{24}y_{35}g_{123}\), and \(y_{34}P_{1235}^{(r)}\) has \(y_{25}y_{34}g_{123}\). It turns out, in these two possibilities, there is only one required syzygy: \((-\frac{1}{2}y_{23}y_{45}+y_{24}y_{35}-y_{25}y_{34})e_{123}+\cdots \).

Finally, for \(S(P_{1245}^{(r)},P_{2345}^{(r)})\) with \(r\le 4\), in the equality

$$\begin{aligned} S\left( P_{1245}^{(r)},P_{2345}^{(r)}\right) =y_{23}P_{1245}^{(r)}-y_{12}P_{2345}^{(r)}=-y_{25}P_{1234}^{(r)}+y_{24}P_{1235}^{(r)}, \end{aligned}$$

only when \(r=3\), \(y_{23}P_{1245}^{(r)}\) has \(\frac{1}{2}y_{23}y_{45}g_{123}\); when \(r=2\), \(y_{25}P_{1234}^{(r)}\) has \(y_{24}y_{25}g_{123}\), and when \(r=3\), \(y_{25}P_{1234}^{(r)}\) has \(y_{25}y_{34}g_{123}\); when \(r=2\), \(y_{24}P_{1235}^{(r)}\) has \(y_{24}y_{25}g_{123}\), and when \(r=3\), \(y_{24}P_{1235}^{(r)}\) has \(y_{24}y_{35}g_{123}\). Therefore, only when \(r=3\), there is a syzygy \((\frac{1}{2}y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34})e_{123}+\cdots \).

To summarize the results obtained, there are only two degree 4 syzygies whose monomials of the coefficient of \(e_{123}\) divide the monomials of \(y_{24}(y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34})\):

$$\begin{aligned} \left( \frac{1}{2}y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34}\right) e_{123}+\cdots \end{aligned}$$

and

$$\begin{aligned} \frac{1}{2}y_{24}y_{45}e_{123}+\cdots . \end{aligned}$$

It is clear that they cannot generate \(y_{24}(y_{23}y_{45}-y_{24}y_{35}+y_{25}y_{34})e_{123}+\cdots \). Therefore the syzygy \((*)\) is minimal, as required. \(\square \)

Remark 5.4

When \(n=3\), the equality \({\mathrm{reg}}({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})))=1\) can be easily seen because \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m})) =Q[x_1,x_2,x_3]/(x_1y_{23}-x_2y_{13}+x_3y_{12})\) and \(x_1y_{23}-x_2y_{13}+x_3y_{12}\) is homogeneous of degree two.

On the other hand, when \(n=6\), one might hope naturally to find one degree 6 second syzygy by using the same method as above. Unfortunately it is impossible because, in this case, we can find a set of generators of degree at most 5 for the first syzygy of elements \(\{g_{ijk}\}\) by using the computer algebra system CoCoA. Therefore, to get an equality for the regularity of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\) in the case \(n\ge 6\), one might need to find a satisfied third syzygy of \({\mathrm{Sym}}({\mathrm{Syz}}_1(\mathfrak {m}))\), which is challenging.