Annali di Matematica Pura ed Applicata (1923 -)

, Volume 197, Issue 6, pp 1687–1706

Liouville results for elliptic equations in strips with finite Morse index

• Belgacem Rahal
• Cherif Zaidi
Article

Abstract

Consider the strip $$\varOmega =\mathbb {R}^{n-k}\times \omega$$ where $$n\ge 3,\;\;k\ge 1$$ and $$\omega$$ is a smooth bounded domain of $$\mathbb {R}^k$$. We are concerned with the following superlinear elliptic equations:
\begin{aligned} {\left\{ \begin{array}{ll} \Delta ^{2} u= |u|^{p-1}u &{}\quad \text {in} \; \varOmega \\ u =|\nabla u| = 0 &{}\quad \text {on} \; \partial \varOmega =\mathbb {R}^{n-k}\times \partial \omega \end{array}\right. } \end{aligned}
where $$p>1$$ and $$u \in C^4(\overline{\varOmega })$$. We prove Liouville-type theorems for stable solutions or solutions which are stable outside a compact set of $$\varOmega$$. We first provide an integral estimate from stability which combined with Pohozaev-type identity to obtain nonexistence results for $$p_\mathrm{s}(n,4)< p \le p_\mathrm{s}(n-k,4)$$, where $$p_\mathrm{s}(z,4):=\frac{z+4}{z-4}$$ is the Sobolev exponent of $$\mathbb {R}^z$$. Also, we establish monotonicity formula to prove the nonexistence of nontrivial stable solution for all $$p>1$$ and solution which is stable outside a compact set for $$p > p_\mathrm{s}(n-k,4)$$. Our classification is close to a sharp result since in the subcritical case [i.e., $$1<p <p_\mathrm{s}(n,4)$$] we prove the existence of a mountain-pass solution with Morse index equal to 1 in the subspace of $$H_0^2(\varOmega )$$ having cylindrical symmetry.

Keywords

Morse index Liouville-type theorems Pohozaev identity Monotonicity formula

Mathematics Subject Classification

Primary: 35J55 35J65 Secondary: 35B65

Notes

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing interest

The authors declare that they have no competing interests.

References

1. 1.
Bahri, A., Lions, P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure Appl. Math. 45, 1205–1215 (1992)
2. 2.
Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)
3. 3.
Davila, J., Dupaigne, L., Wang, K., Wei, J.: A monotonicity formula and a liouville-type theorem for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)
4. 4.
Dupaigne, L., Harrabi, A.: The Lane–Emden equation in strips. Proc. R. Soc. Edin. Sec. 148A, 51–62 (2018).
5. 5.
Esteban, M.J.: Nonlinear elliptic problems in strip-like domains : symmetry of positive vortex rings. Nonlinear Anal. 7(4), 365–379 (1983)
6. 6.
Esteban, M.J., Lions, P.-L.: A compactness lemma. Nonlinear Anal. TMA 7(4), 381–385 (1983)
7. 7.
Farina, A.: On the classification of soultions of the Lane–Emden equation on unbounded domains of $$\mathbb{R}^n$$. J. Math. Pures Appl. 87(9), 537–561 (2007). no. 5
8. 8.
Gazzola, F., Grunau, H.-C., Squassina, M.: Existence and nonexistence result for critical growth biharmoic equations. Calc. Var. Partial Differ. Equ. 18, 117–143 (2003)
9. 9.
Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)
10. 10.
Gidas, B., Spruck, J.: Apriori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6(8), 883–901 (1981)
11. 11.
Harrabi, A., Rahal, B.: On the sixth-order Joseph–Lundgren exponent. Ann. Henri Poincaré 18(3), 1055–1094 (2017)
12. 12.
Harrabi, A., Rahal, B.: Liouville type theorems for elliptic equations in half-space with mixed boundary value conditions. Adv. Nonlinear Anal.
13. 13.
Harrabi, A., Rahal, B.: Liouville results for $$m$$-Laplace equations in half-space and strips with mixed boundary value conditions and finite Morse index. J. Dyn. Differ. Equ. (2017).
14. 14.
Harrabi, A., Rahal, B., Hamdani, M.K.: Classification of stable solutions for non-homogeneous higher order elliptic PDEs. J. Inequal. Appl. (2017).
15. 15.
Lin, C.S.: A classification of soluitions of a conformally invariant fourth order equation in $$R^n$$. Comment. Math. Helv. 73, 206–231 (1998)
16. 16.
Oswald, P.: On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball. Comment. Math. Univ. Carol. 26, 565–577 (1985)
17. 17.
Pederson, R.N.: On the unique continuation theorem for certain second and fourth order elliptic equations. Commun. Pure Appl. Math. 11, 67–80 (1958)
18. 18.
Ramos, N., Rodrigues, P.: On a fourth order superlinear elliptic problem. Electron. J. Differ. Equ. Conf. 06, 243–255 (2001)
19. 19.
Solimini, Sergio: Morse index estimates in min–max theorems. Manuscr. Math. 63(4), 421–453 (1989)
20. 20.
Wang, X.: On the Cauchy problem for reaction–diffusion equations. Trans. Am. Math. Soc. 337(2), 549–590 (1993)
21. 21.
Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

• Belgacem Rahal
• 1
• Cherif Zaidi
• 1
1. 1.Département de Mathématiques, Faculté des SciencesUniversité de SfaxSfaxTunisia