Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 197, Issue 5, pp 1613–1629 | Cite as

Singular and Calabi–Yau varieties linked with billiard trajectories and diffusion operators

  • Juan García Escudero
Article

Abstract

The images under a certain map of periodic billiard trajectories inside the fundamental region of the affine Weyl group of the root system \(A_{2}\) are closed curves and configurations of lines described by a one-parameter family of polynomials. The polynomials are related with eigenvectors of symmetric diffusion operators connected with the deltoid. Several associated singular varieties and Calabi–Yau threefolds defined over the rationals are constructed.

Keywords

Algebraic hypersurfaces Singularities Calabi–Yau threefolds 

Mathematics Subject Classification

Primary 14J70 Secondary 14J17 14J32 35K05 

References

  1. 1.
    Bakry, D.: Symmetric diffusions with polynomial eigenvectors. In: Stochastic Analysis and Applications 2014. Springer Proceedings in Mathematics & Statistics, vol. 100, pp. 25–49. Springer, Cham (2014)Google Scholar
  2. 2.
    Bakry, D., Orevkov, S., Zani, M.: Orthogonal polynomials and diffusion operators (2014). arXiv:1309.5632
  3. 3.
    Chmutov, S.V.: Examples of projective surfaces with many singularities. J. Algebr. Geom. 1, 191–196 (1992)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Clemens, C.H.: Double solids. Adv. Math. 47, 107–230 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Degtyarev, A.: On plane sextics with double singular points. Pac. J. Math. 265, 327–348 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Erdős, P.: Combinatorial problems in geometry. Math. Chron. 12, 35–54 (1983)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Erdős, P., Purdy, G.: Extremal problems in combinatorial geometry. In: Handbook of Combinatorics, vol. 1, pp. 809–874. Elsevier, North-Holland (1995)Google Scholar
  8. 8.
    Escudero, J.G.: On a family of complex algebraic surfaces of degree 3n. C. R. Math. Acad. Sci. Paris, 351, 699-702 (2013). Corrigendum. Ibid. 354, 1214 (2016)Google Scholar
  9. 9.
    Escudero, J.G.: Hypersurfaces with many \(A_{j}\)-singularities: explicit constructions. J. Comput. Appl. Math. 259, 87–94 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Escudero, J.G.: Arrangements of real lines and surfaces with \(A\) and \(D\) singularities. Exp. Math. 23, 482–491 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Escudero, J.G.: A construction of algebraic surfaces with many real nodes. Ann. Mat. Pura Appl. 195, 571–583 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Escudero, J.G.: Gallai triangles in configurations of lines in the projective plane. C. R. Math. Acad. Sci. Paris 354, 551–554 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Escudero, J.G.: Threefolds from solutions of a partial differential equation. Exp. Math. 26, 189–196 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Escudero, J.G.: The root lattice \(A_2\) in the construction of substitution tilings and singular hypersurfaces. In: Applications of Computer Algebra. Springer Proceedings in Mathematics & Statistics, vol. 198, pp. 101–117. Springer, Cham (2017)Google Scholar
  15. 15.
    Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2008)zbMATHGoogle Scholar
  16. 16.
    Greuel, G.M., Stussak, C., Urbanek, M, Meyer, H.: Surfer, Visualization of Algebraic Surfaces (2010). www.imaginary.org/program/surfer
  17. 17.
    Grünbaum, B.: Arrangements and Spreads. American Mathematical Society, Providence (1972)Google Scholar
  18. 18.
    Hirzebruch, F.: Some examples of algebraic surfaces. In: Proceedings 21st Summer Research Institute Australian Mathematical Society. Contemporary Mathematics, vol. 9, pp. 55–71. American Mathematical Society, Providence (1982)Google Scholar
  19. 19.
    Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle. In: Gesammelte Abhandlungen. Bd. II, pp. 757–770. Springer, Berlin (1987)Google Scholar
  20. 20.
    Hoffman, M., Withers, W.D.: Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. Am. Math. Soc. 308, 91–104 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1979)zbMATHGoogle Scholar
  22. 22.
    Meyer, C.: Modular Calabi–Yau Threefolds, Fields Institute Monographs . American Mathematical Society, Providence (2005)Google Scholar
  23. 23.
    Persson, U.: Horikawa surfaces with maximal Picard numbers. Math. Ann. 259, 287–312 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tabachnikov, S.: Geometry and billiards. Student Mathematical Library, vol. 30. American Mathematical Society, Providence (2005)Google Scholar
  25. 25.
    Van Geemen, B., Werner, J.: Nodal quintics in \({\mathbb{P}}^4\). In: Arithmetics of Complex Manifolds. Lecture Notes in Mathematics, vol. 1399, pp. 48–59. Springer, Berlin (1989)Google Scholar
  26. 26.
    Werner, J., Van Geemen, B.: New examples of three-folds with \(c_{1}=0\). Math. Z. 203, 211–225 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Withers, W.D.: Folding polynomials and their dynamics. Am. Math. Mon. 95, 399–413 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wolfram, S.: Mathematica. Addison-Wesley, Reading (1991)Google Scholar
  29. 29.
    Yui, N.: Modularity of Calabi–Yau varieties: 2011 and beyond. In: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, Fields Institute Communications, vol. 67, pp. 101–139. Springer, New York (2013)Google Scholar
  30. 30.
    Zribi, O.: Orthogonal polynomials associated with the deltoid curve. Colloq. Math. 147, 1–34 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad de OviedoOviedoSpain

Personalised recommendations