Monitoring Acid Mine Drainage’s Effects on Surface Water in the Kizel Coal Basin with Sentinel-2 Satellite Images

Monitoreo de los efectos del drenaje ácido de las minas en las aguas superficiales de la cuenca de carbón de Kizel con imágenes del satélite Sentinel-2

Monitoring der Auswirkung saurer Grubenwässer auf Oberflächengewässer im Kizel Kohlerevier mittels Sentinel-2 Satellitenbildern

西班牙西南Aznalcollar尾矿坝事故

Abstract

Mining in the Kizel coal basin (Perm Region, Russia) ceased 20 years ago; however, AMD with high levels of total iron (Fetotal) and trace elements still affects the rivers. In this study, we attempted to estimate inter-annual and seasonal variability of AMD-related surface water contamination using Sentinel-2 images from 2016 to 2019. The acid mine water index (AMWI), which is a normalized difference of spectral reflectance in the red and blue bands, was calculated from Sentinel-2 images. We compared the AMWI values with measured Fetotal concentrations in the surface water. A statistically significant (at a 0.05 significance level) Spearman’s rank correlation between AMWI and Fetotal concentration was found for 5 out of 7 surface water sampling points. We found that surface water contamination reaches a seasonal maximum in July, 1–1.5 months after the end of the snowmelt high water period. Excessive summer rainfalls also contributes to increased contamination, causing contamination to possibly spread more than 200 km from the AMD sources. In contrast, arid summer conditions were associated with a substantially decreased AMD discharge and Fetotal concentrations in the surface water. The main uncertainties in our results are associated with the effect of contaminated bottom and bank sediments and suspended sediments on the spectral characteristics of the water surface, and the relatively coarse (10 m) spatial resolution of Sentinel-2 images. However, despite the data and method limitations, our results show that Sentinel-2 images have substantial potential for monitoring AMD-related contamination of surface water.

Resumen

La minería en la cuenca de carbón de Kizel (región de Perm, Rusia) cesó hace 20 años; sin embargo, el drenaje ácido de minas (DAM), con altos niveles de hierro total (Fe total) y oligoelementos todavía afecta a los ríos. En este estudio, se intentó estimar la variabilidad interanual y estacional de la contaminación de las aguas superficiales provocada por el DAM utilizando imágenes de Sentinel-2 de 2016 a 2019. El índice de aguas ácidas de mina (AMWI), que es una diferencia normalizada de reflectancia espectral en las bandas roja y azul, se calculó a partir de las imágenes del Sentinel-2. Se compararon los valores del AMWI con las concentraciones totales de Fe medidas en el agua superficial. Se encontró una correlación estadísticamente significativa (a un nivel de significación de 0,05) del rango de Spearman entre la IMAO y la concentración total de Fe para 5 de los 7 puntos de muestreo de aguas superficiales. Se encontró que la contaminación de las aguas superficiales alcanza un máximo estacional en julio, de 1 a 1,5 meses después del final del período de aguas altas de deshielo. Las excesivas lluvias de verano también contribuyen al aumento de la contaminación, causando que la contaminación se extienda posiblemente a más de 200 km de las fuentes de DAM. Por el contrario, las condiciones áridas del verano se asociaron con una disminución sustancial de la descarga de DAM y de las concentraciones totales de Fe en las aguas superficiales. Las principales incertidumbres de nuestros resultados están asociadas con el efecto de los sedimentos contaminados del fondo y de las orillas y los sedimentos en suspensión sobre las características espectrales de la superficie del agua, y la resolución espacial relativamente gruesa (10 m) de las imágenes de Sentinel-2. Sin embargo, a pesar de las limitaciones de los datos y los métodos, nuestros resultados muestran que las imágenes del Sentinel-2 tienen un potencial sustancial para vigilar la contaminación de las aguas superficiales relacionada con la DAM.

Zusammenfassung

Der Kohlebergbau im Kizel Revier (Verwaltungsregion Perm, Russland) endete vor 20 Jahren, doch auch heute noch werden Flüsse durch saure Grubenwässer mit erhöhten Eisen- und Spurenelementgehalten beeinträchtigt. In der vorliegenden Studie wurde versucht, die jährliche und saisonale Schwankung von bergbaulich verursachten Kontaminationen in Oberflächengewässern für den Zeitraum 2016-2019 mittels Sentinel-2 Satellitenbildern abzuschätzen. Aus den Satellitenbildern wurde der sog. Acid Mine Water Index (AMWI) als normierte Differenz der spektralen Reflexion in den roten und blauen Bändern errechnet und mit gemessenen Konzentrationen für Gesamteisen im Oberflächenwasser verglichen. Mittels Spearman’scher Rangkorrelation (Signifikanzniveau 0,05) wurde für 5 von 7 Probenahmepunkte eine statistisch signifikante Korrelation zwischen AMWI und Eisenkonzentration festgestellt. Dabei wurde ein saisonales Maximum der Oberflächenwasserkontamination im Juli, ca. 1-1,5 Monate nach Ende der durch Schneeschmelze bedingten Hochwasserzeit festgestellt. Extreme Sommerregenfälle führten ebenfalls zu erhöhten Konzentrationen und verursachen eine Ausbreitung der Kontaminationen über mehr als 200 km von der Schadstoffquelle aus. Demgegenüber führten trockene Sommerbedingungen zu einem Rückgang des Grubenwasseraufkommens und infolgedessen zu einer Verringerung der Eisenkonzentration im Oberflächengewässer. Unsicherheiten ergaben sich infolge der relativ groben Auflösung der Sentinel-2-Bilder (10 m) sowie durch Auswirkungen kontaminierter Sedimente an Boden, Ufern und in Suspension auf die Reflexionseigenschaften der Wasseroberfläche. Ungeachtet dieser methodischen und datenbezogenen Einschränkungen zeigt die Studie das große Potential von Sentinel-2-Satellitenbildern für das Monitoring der Verunreinigung von Oberflächengewässern mit sauren Grubenwässern.

概要

经历了地基粘土层持续破坏之后, Aznalcóllar尾矿库发生溃坝, 存储的大量饱和黄铁矿尾矿溃泄而下, 迅速排出150万立方尾矿和550万立方酸性废水. 综述了导致坝下滑动面形成的主要岩土工程因素: 下方工程影响, 超固结层脆弱性, 基础粘土层高塑性和粘土层内偏高孔隙水压. 下方施工法在大堤推进脚下产生了较强的高应力比“波”, 使之经受了从峰值到残余值的作用. 高塑性和蒙脱石矿物的存在使基础粘土层脆弱性非常重要。高孔隙压力由尾砂密度高(3.1 g/cc), 粘土渗透性低和上方固结过程引起. 讨论了大坝破坏的动力学过程(位移, 速度和加速度). 从平面角度, 坝体几何形状及其与粘土层走向和倾向的关系解释了坝体的破坏位置特征. 总结了案例过程给我们留下的教训.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alexander SS, Dein J, Gold DR (1973) The use of ERTs-1 MSS data for mapping strip mines and acid mine drainage in Pennsylvania. Proc, Symp on Significant Results Obtained from the Earth Resources Technology Satellite 1). NASA, Washington, pp 569–575

    Google Scholar 

  2. Anderson JE (1994) Spectral characterization of acid-mine and neutral drainage bacterial precipitates and their relationship to water quality in a piedmont watershed. Va J Sci 45(3):175–186

    Google Scholar 

  3. Anderson JE, Robbins EI (1998) Spectral reflectance and detection of iron-oxide precipitates associated with acidic mine drainage. Photogramm Eng Rem Sens 64:1201–1208

    Google Scholar 

  4. Berezina OA, Shikhov AN, Abdullin RK (2018) The use of multi-temporal satellite images for environmental assessment in coal mining areas (by example of closed Kizel coal basin). Curr Prob Remote Sens Earth Space 15(2):144–158 [in Russian]

    Google Scholar 

  5. Burrell R, Whitworth K (2000) The influence of mine water recovery on surface on gas and water discharges in the Yorkshire Coalfield. In: Proceedings of the 7th International Mine Water Assoc Congress, pp 81–90

  6. Buzzi J, Riaza A, García-Meléndez E, Carrère V, Holzwarth S (2016) Monitoring of river contamination derived from acid mine drainage using airborne imaging spectroscopy (HyMap data, south-west Spain). River Res Appl 32(1):125–136

    Article  Google Scholar 

  7. Chavez PS Jr. (1996) Image-based atmospheric corrections—revisited and improved. Photogramm Eng Rem Sens 62(9):1025–1036

    Google Scholar 

  8. Demchak J, Skosen J, McDonald L (2004) Distribution and behavior of heavy metals in a river polluted by acid mine drainage in the Dabaoshan mine area, China. J Environ Qual 33(2):656–668

    Article  Google Scholar 

  9. Donovan JJ, Leavitt BR, Werner E (2003) Long-term changes in water chemistry as a result of mine flooding in closed mines of the Pittsburgh coal basin, USA. Proc, 6th ICARD, pp 869–875

  10. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  11. Gammons CH, Nimick DA, Parker SR, Cleasby TE, McCleskey RB (2005) Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA. Geochim et Cosmochim Acta 69(10):2505–2516

    Article  Google Scholar 

  12. Georgievsky V, Yu (2015) The main hydrological characteristics river basins of the Kama River Reference Book. Moscow, p 135 [in Russian]

  13. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  Google Scholar 

  14. Kopačková V (2014) Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int J Appl Earth Obs Geoinf 28:28–42

    Article  Google Scholar 

  15. Kopačková V (2019) Mapping acid mine drainage (AMD) and acid sulfate soils using Sentinel-2 data. In: Proceedings of the IGARSS 2019–2019 IEEE International. Geoscience and Remote Sensing Symp, pp 5682–5685

  16. Maximovich NG (2018) Pyankov SV (2018) The Kizel Coal Basin: Environmental Problems and Solutions. Perm State University, Perm (In Russian)

    Google Scholar 

  17. Maximovich NG, Khayrulina EA (2014) Artificial geochemical barriers for environmental improvement in a coal basin region. Environ Earth Sci 72:1915–1924

    Article  Google Scholar 

  18. Menshikova E, Osovetsky B, Blinov S, Belkin P (2020) Mineral formation under the influence of mine waters (the Kizel Coal Basin, Russia). Minerals 10:364. https://doi.org/10.3390/min10040364

    Article  Google Scholar 

  19. Monitoring of the socio-environmental impacts of the mines closure in the Ural region (2006–2018). State reports [in Russian]

  20. Okamoto M, Kobayashi T, Sakamoto M (2006) Physical properties of sediments deposited in the minewater from a closed coal mine. In: Proceedings of the 10th Congress of the International Assoc for Engineering Geology and the Environment (Electronic resource), Nottingham, UK. Electronic optical disks (CD-ROM)

  21. Olías M, Nieto JM, Sarmiento AM, Cerón JC, Cánovas CR (2004) Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (south west Spain). Sci Total Environ 333(1–3):267–281

    Article  Google Scholar 

  22. Powell JD (1988) Origin and influence of coal mine drainage on streams of the United States. Environ Geol Water Sci 11:141–152

    Article  Google Scholar 

  23. Raval S (2011) Investigation of mine environmental monitoring with satellite based sensors. PhD Thesis. School of Mining Engineering, The University of New South Wales, Sydney

  24. Riaza A, Buzzi J, García-Meléndez E, Carrère V, Müller A (2011) Monitoring the extent of contamination from acid mine drainage in the Iberian pyrite belt (SW Spain) using hyperspectral imagery. Remote Sens 3(10):2166–2186

    Article  Google Scholar 

  25. Riaza A, Buzzi J, García-Meléndez E, Carrère V, Sarmiento A, Müller A (2015) Monitoring acidic water in a polluted river with hyperspectral remote sensing (HyMap). Hydrol Sci J 60(6):1064–1077

    Article  Google Scholar 

  26. Sarmiento AM, Nieto JM, Olías M, Cánovas CR (2009) Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Appl Geochem 24(4):697–714

    Article  Google Scholar 

  27. Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarmand M (2019) Identification of acid mine drainage potential using sentinel 2a imagery and field data. Mine Water Environ 38:707–717

    Article  Google Scholar 

  28. Siddharth S, Jamal A, Dhar BB, Shukla R (2002) Acid-base accounting: a geochemical tool for management of acid drainage in coal mines. Mine Water Environ 21:106–110

    Article  Google Scholar 

  29. Swayze GA, Smith KS, Clark RN, Sutley SJ, Pearson RM, Vance JS, Hageman PL, Briggs PH, Meier AL, Singleton MJ, Roth S (2000) Using imaging spectroscopy to map acidic mine waste. Environ Sci Technol 34(1):47–54

    Article  Google Scholar 

  30. Tao X, Wu P, Tang C, Liu H, Sun J (2012) Effect of acid mine drainage on a karst basin: a case study on the high-As coal mining area in Guizhou province, China. Environ Earth Sci 65(3):631–638

    Article  Google Scholar 

  31. Valente TM, Gomes CL (2009) Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407(3):1135–1152

    Article  Google Scholar 

  32. Williams DJ, Bigham JM, Cravotta CA III, Traina SJ, Anderson JE, Lyon JG (2002) Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Appl Geochem 17:1273–1286

    Article  Google Scholar 

  33. Wobber FJ, Russell OR, Deely DJ (1975) Multiscale aerial and orbital techniques for management of coal-mined lands. Photogrammetria 31(4):117–133

    Article  Google Scholar 

  34. Wolkersdorfer C, Nordstrom DK, Beckie RD, Cicerone DS, Elliot T, Edraki M, Valente T, França SCA, Kumar P, Lucero RAO, Soler AIG (2020) Guidance for the integrated use of hydrological, geochemical, and isotopic tools in mining operations. Mine Water Environ 39(2):204–228

    Article  Google Scholar 

  35. Yu S, Chen Z, Wang Y (2006) Application of multi-sensor image in monitoring mining activities and related environment changes: a case study at Daye, Hubei, China. In: Proceedings of the SPIE – The Int Soc for Optical Eng 6200, Art. No. https://doi.org/10.1117/12.682167

  36. Zabcic N, Rivard B, Ong C, Muller A (2009) Using airborne hyperspectral data to characterize the surface pH of pyrite mine tailings. In: Proceedings of the First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp 154–157

  37. US EPA (U.S. Environmental Protection Agency) (1994) Acid Mine Drainage Prediction. EPA 530-R-94-036, https://www.epa.gov/sites/production/files/2015-09/documents/amd.pdf. Accessed 16 Sept 2020

Download references

Acknowledgements

This study was funded by the Ministry of High Education and Science of the Russian Federation project 2019 − 0858 and RFBR Projects 17-05-41114 and 19-05-50073.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrey N. Shikhov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pyankov, S.V., Maximovich, N.G., Khayrulina, E.A. et al. Monitoring Acid Mine Drainage’s Effects on Surface Water in the Kizel Coal Basin with Sentinel-2 Satellite Images. Mine Water Environ (2021). https://doi.org/10.1007/s10230-021-00761-7

Download citation

Keywords

  • Coal mining areas
  • Acid mine water
  • Surface water contamination
  • Inter‐annual and seasonal variability
  • Remote sensing data
  • Spectral indices