Skip to main content
Log in

Geochemical Modelling of the Effects of a Proposed Uranium Tailings Pond on Groundwater Quality

Geochemische Modellierung von Einflüssen Einer Geplanten Absetzanlage für Urantailings auf die Grundwasserbeschaffenheit

Modelado Geoquímico de los Efectos de un Dique de Colas de Uranio Sobre la Calidad del Agua Subterránea

拟建铀矿尾矿库对地下水水质影响的地球化学模拟

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The impact of a proposed uranium tailings pond on groundwater quality was assessed by geochemical modelling. Groundwater samples were collected from six dug wells in the Nalgonda district, Andhra Pradesh, in southern India, once every 2 months from March 2008 to January 2010, and analysed for calcium, magnesium, sodium, potassium, chloride, sulphate, carbonate, bicarbonate, and uranium. Prediction of groundwater quality was carried out for 100 years using PHREEQC to assess the effects of infiltration of water from the proposed tailings pond. The sensitivity of the model for variations in porosity, hydraulic gradient, hydraulic conductivity, and concentration of uranium in the tailings was evaluated. Geochemical modelling predicts that if the chemical composition of the tailings water is maintained at about the expected mean concentrations, and an appropriate liner is installed with an infiltration rate ≤1.0 × 10−9 m/s, the concentration of solutes in the groundwater will be increased from present background levels for a down-gradient distance of up to 500 m for the anticipated life of the mine, i.e. 16 years. The concentration of ions in groundwater would exceed background concentrations for up to 100 m at the end of 100 years. This study was used to predict the optimum chemical composition for the tailings and the extent, in terms of time and distance, that the groundwater concentration of various ions would be increased by infiltration of wastes from the tailings pond.

Zusammenfassung

Der Einfluss einer geplanten Absetzanlage für Urantailings auf die Grundwasserbeschaffenheit wurde mittels geochemischer Modellierung beurteilt. Im Zeitraum von März 2008 bis Januar 2010 wurden Grundwasserproben jeweils zweimonatlich aus sechs Schachtbrunnen im Nalgonda Distrikt, Andhra Pradesh, Südindien, entnommen und bezüglich Ca, Mg, Na, K, Chlorid, Sulfat, Karbonat, Bikarbonat und Uran analysiert. Um den Einfluss von aus dem geplanten Schlammteich zusitzenden Sickerwässern zu bewerten, wurde mittels PHREEQC eine Grundwasserbeschaffenheitsprognose für einen Zeitraum von 100 Jahren erstellt. Die Modellsensitivität wurde hinsichtlich Schwankungen von Porosität, hydraulischem Gradienten, hydraulischer Leitfähigkeit sowie der Urankonzentration der Tailings bewertet. Im Ergebnis der geochemischen Modellierung wird vorhergesagt, dass es unter Annahme einer weitgehend konstanten chemischen Zusammensetzung der Tailings im Bereich des mittleren Erwartungswertes sowie des Einbaus einer geeigneten Basisabdichtung mit einer Durchlässigkeit von ≤1.0 × 10−9 m/s zur Konzentrationserhöhung von im Grundwasser gelösten Stoffen im Vergleich zu den derzeit gemessenen Hintergrundwerten kommen wird, und zwar in einer Entfernung von bis zu 500 m im Abstrom der Anlage bezogen auf das Jahr 16, welches der erwarteten Lebensdauer der Grube entspricht. Für das Jahr 100 prognostiziert das Modell noch Überschreitungen der Grundwasserhintergrundkonzentrationen in einem Abstand von bis zu 100 m. Die Untersuchung diente der Bestimmung der optimalen chemischen Tailingszusammensetzung sowie der räumlichen und zeitlichen Prognose desjenigen Bereichs, in dem die Grundwasserkonzentrationen verschiedener Ionen infolge Infiltration von Abwasser des Schlammteichs erhöht werden.

Resumen

El impacto de un dique de colas de uranio sobre la calidad del agua subterránea fue estudiado por modelado geoquímico. Se tomaron muestras de agua subterránea desde seis pozos en el distrito Nalgonda, Andhra Pradesh, en el sur de India, una vez cada dos meses desde Marzo 2008 a Enero 2010 y analizadas para determinar Ca, Mg, Na, K, cloruro, sulfato, carbonato, bicarbonato y uranio. La predicción de la calidad del agua subterránea fue realizada para 100 años usando PHREEQC para determinar los efectos de infiltración desde el dique de colas propuesto. Se evaluó la sensibilidad del modelo ante variaciones en porosidad, gradiente hidráulico, conductividad hidráulica y concentración de uranio en las colas. Los modelos geoquímicos predicen que si la composición química del agua de las colas es mantenida en las concentraciones promedio esperadas y un revestimiento apropiado es instalado con una velocidad de infiltración ≤1,0 × 10−9 m/s, la concentración de solutos en el agua subterránea se incrementaría desde los presentes valores, en un gradiente descendente, hasta una distancia de 500 m durante la vida esperada de la mina, i.e. 16 años. El modelo predice que la concentración de iones en las aguas subterráneas excedería las concentraciones hasta un máximo de 100 m luego de 100 años. Este estudio fue usado para predecir la composición química óptima para las colas y la extensión, en términos de tiempo y distancia, a la que la concentración de varios iones en las aguas subterráneas sería incrementada por la infiltración de aguas desde los diques de cola.

抽象

通过地球化学模拟方法评价了拟建铀矿尾矿库对地下水水质影响。从2008年3月到2010年1月,从印度南部安得拉省纳尔贡达区(Nalgonda district, Andhra Pradesh)的6口管井每两个月一次集取地下水样,分析水样的钙、镁、钠、钾、氯化物、硫酸盐、碳酸盐、重碳酸盐和铀含量。利用PHREEQC预测了100年时间里拟建尾矿库水下渗对地下水质的影响。分析了尾矿库孔隙度、水力坡度、渗透系数和铀浓度变化对模型灵敏度的影响。本地球化学模型预测结果显示,如果尾矿库水的化学成分能够维持预期平均浓度、尾矿库也能够铺设渗透系数 ≤1.0 × 10−9 m/s的底衬,地下水溶质浓度将在16年铀矿生产期内、至下游500 m范围内高于背景值。在100年之后,地下水中离子浓度将仅在100 m范围内超过背景值。研究可用于预测尾矿化学成分,预测尾矿库水入渗引起的地下水离子浓度增长的程度(时间和距离范围)。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2:335–341

    Article  Google Scholar 

  • Abdelouas A, Lutze W, Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34(4):343–361

    Article  Google Scholar 

  • Annual Health Physics Report for the year 2004 (2005) Health Physics Unit, Environmental Assessment Div, Uranium Corp of India Ltd, Jaduguda, India

  • APHA (American Public Health Association) (1995) Standard methods for the examination of water and wastewater, 19th edn. APHA, Washington

    Google Scholar 

  • Bain JG, Mayer KU, Blowes DW, Frind EO, Molson JWH, Kahnt R, Jenk U (2001) Modelling the closure-related geochemical evolution of groundwater at a former uranium mine. J Contam Hydrol 52(1–4):109–135

    Article  Google Scholar 

  • Bethke CM (1996) Geochemical reaction modelling—concepts and applications. Oxford Univ Press, New York City

    Google Scholar 

  • Biehler D, Falck WE (1999) Simulation of the effects of geochemical reactions on groundwater quality during planned flooding of the Königstein uranium mine, Saxony, Germany. Hydrogeol J 7:284–293

    Article  Google Scholar 

  • Brindha K, Elango L (2013) Occurrence of uranium in groundwater of a shallow granitic aquifer and its suitability for domestic use in southern India. J Radioanal Nucl Chem 295:357–367

    Article  Google Scholar 

  • Brindha K, Elango L, Nair RN (2011) Spatial and temporal variation of uranium in a shallow weathered rock aquifer in southern India. J Earth Syst Sci 120(5):911–920

    Article  Google Scholar 

  • CGWB (Central Ground Water Board) (2007) Ground water information Nalgonda district Andhra Pradesh. http://www.cgwbgovin/District_Profile/AP/Nalgonda.pdf

  • Davis JA, Curtis GP (2007) Consideration of geochemical issues in groundwater restoration at uranium in-situ leach mining facilities (NUREG/CR-6870). USGS, Menlo Park

    Google Scholar 

  • Dreesen DR, Williams JM, Marple ML, Gladney ES, Perrin DR (1982) Mobility and bioavailability of uranium mill tailings contaminants. Environ Sci Technol 16:702–709

    Article  Google Scholar 

  • Elango L, Brindha K, Kalpana L, Sunny F, Nair RN, Murugan R (2012) Modelling of groundwater flow and transport of radionuclides around a proposed uranium tailings pond. Hydrogeol J 20(4):797–812

    Article  Google Scholar 

  • Gómez P, Garralón A, Buil B, Sànchez L (2003) Geochemical processes related to uranium mobilisation on groundwaters in a restores uranium mine. In: Merkel B, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Proceedings of International Conference, Uranium Mining and Hydrogeology III and the International Mine Water Assoc Symposium, Freiberg, Germany

  • Gómez P, Garralón A, Buil B, Turrero MJ, Sànchez L, de la Cruz B (2006) Modelling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309

    Article  Google Scholar 

  • Goode DJ, Wilder RJ (1987) Ground-water contamination near a uranium tailings disposal site in Colorado. Ground Water 25(5):545–554

    Article  Google Scholar 

  • Gupta R, Sarangi AK (2005) Emerging trends of uranium mining: the Indian scenario. Presented at the IAEA symp on uranium production and raw materials for the nuclear fuel cycle—supply and demand, economics, the environment and energy security, accessed 7 Mar 2013. http://www.ucil.gov.inweb/Papers-Sarangi/Emerging%20trend%20in%20U%20mining.pdf

  • Kulshrestha UC, Kulshrestha MJ, Sekar R, Sastry GSR, Vairamani M (2003) Chemical characteristics of rainwater at a urban site of south-central India. Atmos Environ 37:3019–3026

    Article  Google Scholar 

  • Lichtner PC (1988) The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochim Cosmochim Acta 52:143–165

    Article  Google Scholar 

  • Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. J Geochem Explor 85(3):119–137

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, USGS WRI Report 99-4259, Washington DC

  • Payne TE, Airey PL (2006) Radionuclide migration at the Koongarra uranium deposit, Northern Australia—lessons from the Alligator Rivers analogue project. Phys Chem Earth 31(10–14):572–586

    Article  Google Scholar 

  • Rajesh R, Brindha K, Murugan R, Elango L (2012) Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda district, Andhra Pradesh, India. Environ Earth Sci 65:1203–1213

    Article  Google Scholar 

  • Rapantova N, Licbinska M, Babka O, Grmela A, Pospisil P (2012) Impact of uranium mines closure and abandonment on groundwater quality. Environ Sci Pollut Res 11:7590–7602. doi:10.1007/s11356-012-1340-z

    Google Scholar 

  • Rodgher S, de Azevedo H, Ferrari CR, Roque CV, Ronqui LB, de Campos MB, Nascimento MRL (2013) Evaluation of surface water quality in aquatic bodies under the influence of uranium mining (MG, Brazil). Environ Monit Assess 185(3):2395–2406

    Article  Google Scholar 

  • Schindler M, Durocher JL, Kotzer TG, Hawthorne FC (2013) Uranium-bearing phases in a U-mill disposal site in northern Canada: products of the interaction between leachate/raffinate and tailings material. Appl Geochem 29:151–161

    Article  Google Scholar 

  • Skipperud L, Strømman G, Yunusov M, Stegnar P, Uralbekov B, Tilloboev H, Zjazjev LS, Heier G, Rosseland BO, Salbu B (2013) Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J Environ Radioact 123:50–62

    Article  Google Scholar 

  • Tripathi RM, Sahoo SK, Jha VN, Khan AH, Puranik VD (2008) Assessment of environmental radioactivity at uranium mining, processing and tailings management facility at Jaduguda, India. Appl Radiat Isot 66(11):1666–1670

    Article  Google Scholar 

  • Wang J, Liu J, Zhu L, Qi JY, Chen YH, Xiao TF, Fu SM, Wang CL, Li JW (2012a) Uranium and thorium leached from uranium mill tailing of Guangdong province, China and its implication for radiological risk. Radiat Prot Dosimetry 152(1–3):215–219

    Article  Google Scholar 

  • Wang J, Liu J, Li H, Song G, Chen Y, Xiao T, Qi J, Zhu L (2012b) Surface water contamination by uranium mining/milling activities in northern Guangdong province, China. Clean-Soil Air Water 40(12):1357–1363

    Article  Google Scholar 

  • Zhu C (2003) A case against Kd-based transport models: natural attenuation at a mill tailings site. Comput Geosci 29:351–359

    Article  Google Scholar 

  • Zhu C, Hu FQ, Burden DS (2001) Multi-component reactive transport modelling of natural attenuation of an acid groundwater plume at a uranium mill tailings site. J Contam Hydrol 52:85–108

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India for funding part of this work (Grant 2007/36/35). The authors also thank the Department of Science and Technology’s Funds for Improvement in Science and Technology (Grant No. SR/FST/ESI-106/2010) and the University Grants Commission’s Special Assistance Programme Grant UGC DRS II F.550/10/DRS/2007(SAP-1) for their support in creating the laboratory facilities that were used to carry out part of this work. We thank the two anonymous reviewers and Dr. Kleinmann for their comments, which helped in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Elango.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brindha, K., Elango, L. Geochemical Modelling of the Effects of a Proposed Uranium Tailings Pond on Groundwater Quality. Mine Water Environ 33, 110–120 (2014). https://doi.org/10.1007/s10230-014-0279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0279-3

Keywords

Navigation