Skip to main content
Log in

Optimal methods to fix fish sperm for optical microscopic observation: comparisons among different fixative solutions using sperms of copulatory and non-copulatory marine fishes

  • Short Report
  • Published:
Ichthyological Research Aims and scope Submit manuscript

Abstract

Sperm fixation in better conditions is a requisite for the examination of sperm morphology using optical microscopes. Here, we investigated the effects of different fixatives on sperm morphological characteristics in four marine fishes: copulatory sculpins Pseudoblennius marmoratus and Radulinopsis taranetzi, and non-copulatory sculpin Icelus mororanis and dragonet Repomucenus beniteguri. We found that a 2.5% glutaraldehyde solution is optimal for observing sperm morphology in these fishes. Furthermore, the low concentrations (2.5%) of formalin could be useful, but the solvent for diluting formalin should be changed depending on the species: seawater in copulatory and non-copulatory sculpins and isotonic solution in the non-copulatory dragonet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe T, Munehara, H (2007) Histological structure of the male reproductive organs and spermatogenesis in a copulating sculpin, Radulinopsis taranetzi (Scorpaeniformes: Cottidae). Ichthyol Res 54:137–144

    Article  Google Scholar 

  • Abe T, Munehara H (2009) Adaptation and evolution of reproductive mode in copulating cottid species. In: Jamieson BGM (ed) Reproductive biology and phylogeny of fishes (agnathans and bony fishes). Science Publishers, New Hampshire, pp 221–246

    Chapter  Google Scholar 

  • Akatsuka K (1995) The effects of various fixating buffer solution in the electron microscopic observations. Bull Sch Health Sci Okayama Univ 6:55–61

    Google Scholar 

  • Alavi SMH, Hatef A, Pšenička M, Kašpar V, Boryshpolets S, Dzyuba B, Cosson J, Bondarenko V, Rodina M, Gela D, Linhart O (2012) Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Rev Fish Biol Fisher 22:861–886

    Article  Google Scholar 

  • Balshine S, Leach BJ, Neat F, Werner NY, Montgomerie R (2001) Sperm size of African cichlids in relation to sperm competition. Behav Ecol 12:726–731

    Article  Google Scholar 

  • Buser TJ, Burns MD López JA (2017) Littorally adaptive? Testing the link between habitat, morphology, and reproduction in the intertidal sculpin subfamily Oligocottinae (Pisces: Cottoidea). PeerJ 5:e3634

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao Y, Zhang T (2011) Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 92:381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia FS, Atwood D, Crawford B (1975) Comparative morphology of echinoderm sperm and possible phylogenetic implications. Am Zool 15:553–565

    Article  Google Scholar 

  • Cosson J (2004) The ionic and osmotic factors controlling motility of fish spermatozoa. Aquacult Int 12:69–85

    Article  CAS  Google Scholar 

  • Fitzpatrick JL, Montgomerie R, Desjardins JK, Stiver KA, Kolm N, Balshine S (2009) Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci USA 106:1128–1132

    Article  PubMed  Google Scholar 

  • Gage MJG, MacFarlane C, Yeates S, Shackleton R, Parker GA (2002) Relationships between sperm morphometry and sperm motility in the Atlantic salmon. J Fish Biol 61:1528–1539

    Article  Google Scholar 

  • Gage MJG, Stockley P, Parker GA (1998) Sperm morphometry in the Atlantic salmon. J Fish Biol 53:835–840

    Article  Google Scholar 

  • Hara M (2007) Ultrastructure of spermatozoa of two species of Myctophidae; Symbolophorus californiensis and Notoscopelus sp. Jpn J Ichthyol 54:41–46

    Google Scholar 

  • Hara M (2009) Ultrastructure of the spermatozoa in Japanese Osmeridae. Jpn J Ichthyol 56:119–133

    Google Scholar 

  • Hara M, Akagawa I, Kawahara R (2013) Comparative morphology of spermatozoa in the Gasterosteoidei. Jpn J Ichthyol 60:1–13

    Google Scholar 

  • Immler S, Pitnick S, Parker GA, Durrant KL, Lüpold S, Calhim S, Birkhead TR (2011) Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci USA 108:5325–5330

    Article  PubMed  Google Scholar 

  • Joseph A, Shur BD, Ko C, Chambon P, Hess RA (2010) Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse. Biol Reprod 82:958–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Hata T, Suzuki O, Matsuda J (2006) The relationship between sperm morphology and in vitro fertilization ability in mice. J Reprod Develop 52:561–568

    Article  Google Scholar 

  • Kiernan JA (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: What they are and what they do. Micros Today 1:8–12

    Article  Google Scholar 

  • Koya Y, Hayakawa Y, Markevich A, Munehara H (2011) Comparative studies of testicular structure and sperm morphology among copulatory and non-copulatory sculpins (Cottidae: Scorpaeniformes: Teleostei). Ichthyol Res 58:109–125

    Article  Google Scholar 

  • Koya Y, Munehara H, Takano K, Takahashi H (1993) Effects of extracellular environments on the motility of spermatozoa in several marine sculpins with internal gametic association. Comp Biochem Phys A 106:25–29

    Article  Google Scholar 

  • Koya Y, Munehara H, Takano K (2002) Sperm storage and motility in the ovary of the marine sculpin Alcichthys alcicornis (Teleostei: Scorpaeniformes), with internal gametic association. J Exp Zool A 292:145–155

    Article  Google Scholar 

  • Lahnsteiner F, Berger B, Horvath A, Urbányi B (2004) Studies on the semen biology and sperm cryopreservation in the sterlet, Acipenser ruthenus L. Aquac Res 35:519–528

    Article  Google Scholar 

  • Liakatas J, Williams AE, Hargreave TB (1982) Scoring sperm morphology using the scanning electron microscope. Fertil Steril 38:227–232

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Osada M, Kashihara M, Hirohashi K, Kijima A (2000) Effects of ultraviolet irradiation on genetical inactivation and morphological structure of sperm of the Japanese scallop, Patinopecten yessoensis. Aquaculture 186:233–242

    Article  Google Scholar 

  • Lougovois VP, Kyrana VR (2005) Freshness quality and spoilage of chill-stored fish. In: Arthur PR (ed) Food Policy, Control and Research. Vol. 1. Nova Science Publishers, New York, pp 35–86

    Google Scholar 

  • Lüpold S, Calhim S, Immler S, Birkhead TR (2009) Sperm morphology and sperm velocity in passerine birds. Proc R Soc Lond B 276:1175–1181

    Article  Google Scholar 

  • Mohamed MK, Lee WI, Mottet NK, Burbacher TM (1986) Laser light-scattering study of the toxic effects of methylmercury on sperm motility. J Androl 7:11–15

    Article  CAS  PubMed  Google Scholar 

  • Morisawa M (1994) Cell signaling mechanisms for sperm motility. Zool Sci 11:647–662

    CAS  PubMed  Google Scholar 

  • Ota K, Awata S, Morita M, Yokoyama R, Kohda M (2014) Territorial males can sire more offspring in nests with smaller doors in the cichlid Lamprologus lemairii. J Hered 105:416–422

    Article  PubMed  Google Scholar 

  • Petersen CW, Mazzoldi C, Zarrella KA, Hale RE (2005) Fertilization mode, sperm characteristics, mate choice and parental care patterns in Artedius spp. (Cottidae). J Fish Biol 67:239–254

    Article  Google Scholar 

  • Pitnick S, Hosken DJ, Birkhead TR (2009) Sperm morphological diversity. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic Press, Cambridge, pp 69–149

    Chapter  Google Scholar 

  • Pursel VG, Johnson LA (1974) Glutaraldehyde fixation of boar spermatozoa for acrosome evaluation. Theriogenology 1:63–68

    Article  CAS  PubMed  Google Scholar 

  • Rao MV (1989) Toxic effects of methylmercury on spermatozoa in vitro. Experientia 45:985–987

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Australia

    Google Scholar 

  • Relucenti M, Petruziello L, Familiari G, Heyn R (2010) A simple and reliable method to prepare semen for transmission electron microscopy. In: Méndez-Vilas A, Díaz J (eds) Microscopy: Science, Technology, Applications and Education. Formatex, Badajoz, pp 151–155

    Google Scholar 

  • Schmoll T, Sanciprian R, Kleven O (2016) No evidence for effects of formalin storage duration or solvent medium exposure on avian sperm morphology. J Ornithol 157:647–652

    Article  Google Scholar 

  • Seed J, Chapin RE, Clegg ED, Dostal LA, Foote RH, Hurtt ME, Klinefelter GR, Makris SL, Perreault SD, Schrader S, Seyler D, Sprando R, Treinen KA, Veeramachaneni DN, Wise LD (1996) Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. Reprod Toxicol 10:237–244

    Article  CAS  PubMed  Google Scholar 

  • Simpson JL, Humphries S, Evans JP, Simmons LW, Fitzpatrick JL (2014) Relationships between sperm length and speed differ among three internally and three externally fertilizing species. Evolution, 68:92–104

    Article  PubMed  Google Scholar 

  • Tanghe S, Van Soom A, Sterckx V, Maes D, De Kruif A (2002) Assessment of different sperm quality parameters to predict in vitro fertility of bulls. Reprod Domest Anim 37:127–132

    Article  PubMed  Google Scholar 

  • Tourmente M, Gomendio M, Roldan ER (2011) Sperm competition and the evolution of sperm design in mammals. BMC Evol Biol 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (World Health Organization) (1999) Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We thank Hiroyuki Munehara, Atsuya Miyajima, Nagaaki Sato, Namiko Sato, and the members of Usujiri Fisheries Station, Hokkaido University, for their help during sampling at Usujiri, Hakodate, Japan. We are also grateful to Tamaki Oguro for his help with fish sampling at Tassya Fishing Port, Sado, Japan. We thank Hironori Ando, Takashi Kitahashi, Midori Iida, and the members of Sado Marine Biological Station, Niigata University, for their fruitful discussion at all stages of the work. Two anonymous reviewers greatly improved this manuscript. We would like to thank Editage (http://www.editage.jp) for English language editing. This study was funded by JSPS KAKENHI, Grant No. 16H04841 and 17K19518 to SA, and partly funded by the Sasakawa Scientific Research Grant from the Japan Science Society, Grant No. 29-541 to TI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ito.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Awata, S. Optimal methods to fix fish sperm for optical microscopic observation: comparisons among different fixative solutions using sperms of copulatory and non-copulatory marine fishes. Ichthyol Res 66, 307–315 (2019). https://doi.org/10.1007/s10228-018-0672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10228-018-0672-1

Keywords

Navigation