Modulation of general and specific cognitive precursors to early mathematical competencies in preschool children

Abstract

The main goal of this study was to analyze the contribution of predictors of both domain-general (working memory, processing speed, and receptive vocabulary) and domain-specific variable (estimation and magnitude comparison) processes to informal mathematical performance (numbering, comparison, calculation, and understanding of concepts) in preschoolers. In order to reach this, a structural equation modeling was used. A total of 158 preschool students (ages ranging from 52 to 64 months) participated in the investigation. Students were assessed with informal tasks measuring mathematical thinking, numerical estimation, symbolic and non-symbolic comparison making, coding, receptive vocabulary, and backward digit span. Results showed that domain-general (specially working memory) was the highest impact of the general-domain predictors on informal mathematical competencies and a limited specific-domain factor effects for magnitude comparison. The consequences for mathematics learning in initial school years are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003.

    Article  Google Scholar 

  2. Ansari, D. (2019). Development of number understanding: different theoretical perspectives. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties (pp. 91–104). New York: Springer. doi. https://doi.org/10.1007/978-3-319-97148-3_9.

    Google Scholar 

  3. Aragón, E., Navarro, J.I., Aguilar, M., Cerda, G., & García-Sedeño, M (2016). Predictive model for early math skills based on structural equations. Scandinavian Journal of Psychology, 57 (6), 489-494. https://doi.org/10.1111/sjop.12317.

  4. Aunio, P., & Räsänen, P. (2016). Core numerical skills for learning mathematics in children aged five to eight years—a working model for educators. European Early Childhood Education Research Journal, 24(5), 684–704. https://doi.org/10.1080/1350293X.2014.996424.

    Article  Google Scholar 

  5. Blankenship, T. L., Keith, K., Calkins, S. D., & Bell, M. A. (2018). Behavioral performance and neural areas associated with memory processes contribute to math and reading achievement in 6-year-old children. Cognitive Development, 45, 141–151. https://doi.org/10.1016/j.cogdev.2017.07.002.

    Article  Google Scholar 

  6. Bleses, D., Makransky, G., Dale, P. S., Højen, A., & Ari, B. A. (2016). Early productive vocabulary predicts academic achievement 10 years later. Applied PsychoLinguistics, 37(6), 1461–1476. https://doi.org/10.1017/S0142716416000060.

    Article  Google Scholar 

  7. Bugden, S., DeWind, N. K., & Brannon, E. M. (2016). Using cognitive training studies to unravel the mechanisms by which the approximate number system supports symbolic math ability. Current Opinion in Behavioral Sciences, 10, 73–80. https://doi.org/10.1016/j.cobeha.2016.05.002.

    Article  Google Scholar 

  8. Campos, I. S., Almeida, L. S., Ferreira, A. I., Martinez, L. F., & Ramalho, G. (2013). Cognitive processes and math performance: a study with children at third grade of basic education. European Journal of Psychology of Education, 28(2), 421–436. https://doi.org/10.1007/s10212-012-0121-x.

    Article  Google Scholar 

  9. Cerda, G., Aragón, E., Pérez-Wilson, C., Navarro, J.I. & Aguilar, M. (2018). The Open Algorithm Based on Numbers (ABN) method: An effective instructional approach to domain-specific precursors of arithmetic development. Frontiers in Psychology , 9, 1811 https://doi.org/10.3389/fpsyg.2018.01811.

  10. Chu, F. W., vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. https://doi.org/10.1016/j.jecp.2015.01.006.

    Article  Google Scholar 

  11. Cirino, P. T. (2011). The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology, 108(4), 713–733. https://doi.org/10.1016/j.jecp.2010.11.004.

    Article  Google Scholar 

  12. Clark, C. A. C., Nelson, J. M., Garza, J., Sheffield, T. D., Wiebe, S. A., & Espy, K. A. (2014). Gaining control: changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 107. https://doi.org/10.3389/fpsyg.2014.00107.

    Article  Google Scholar 

  13. Clearman, J., Klinger, V., & Szűcs, D. (2017). Visuospatial and verbal memory in mental arithmetic. The Quarterly Journal of Experimental Psychology, 70(9), 1837–1855. https://doi.org/10.1080/17470218.2016.1209534.

    Article  Google Scholar 

  14. Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968–970. https://doi.org/10.1126/science.1204537.

    Article  Google Scholar 

  15. Clements, D. H., & Sarama, J. (2019). Executive function and early mathematical learning difficulties. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties (pp. 755–771). New York: Springer. doi. https://doi.org/10.1007/978-3-319-97148-3_9.

    Google Scholar 

  16. Costa, H. M., Nicholson, B., Donlan, C., & Van Herwegen, J. (2018). Low performance on mathematical tasks in preschoolers: the importance of domain-general and domain-specific abilities. Journal of Intellectual Disability Research, 62(4), 292–302. https://doi.org/10.1111/jir.12465.

    Article  Google Scholar 

  17. Cragg, L., Richardson, S., Hubber, P. J., Keeble, S., & Gilmore, C. (2017). When is working memory important for arithmetic? The impact of strategy and age. PLoS One, 12(12), e0188693. https://doi.org/10.1371/journal.pone.0188693.

    Article  Google Scholar 

  18. D'Amico, A., & Passolunghi, M. C. (2009). Naming speed and effortful and automatic inhibition in children with arithmetic learning disabilities. Learning and Individual Differences, 19(2), 170–180. https://doi.org/10.1016/j.lindif.2009.01.001.

    Article  Google Scholar 

  19. De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: a longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 103(2), 186–201. https://doi.org/10.1016/j.jecp.2009.01.004.

    Article  Google Scholar 

  20. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55. https://doi.org/10.1016/j.tine.2013.06.001.

    Article  Google Scholar 

  21. Decker, S. L., & Roberts, A. M. (2015). Specific cognitive predictors of early math problem solving. Psychology in the Schools, 52(5), 477–488. https://doi.org/10.1002/pits.21837.

    Article  Google Scholar 

  22. Fawcett, A.J., & Nicholson, R. (2013). DST-J. Test para la Detección de la Dislexia en Niños. [DST-J. The Dyslexia Screening Test – Junior.] Madrid: TEA.

  23. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. https://doi.org/10.1016/j.jecp.2014.01.013.

    Article  Google Scholar 

  24. Ferreira, F. D. O., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. G. (2012). Explaining school mathematics performance from symbolic and nonsymbolic magnitude processing: similarities and differences between typical and low-achieving children. Psychology & Neuroscience, 5(1), 37–46. https://doi.org/10.3922/j.psns.2012.1.06.

    Article  Google Scholar 

  25. Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: a meta-analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003.

    Article  Google Scholar 

  26. Fuchs, L., Fuchs, D., Powell, S., Seethaler, P., Cirino, P., & Fletcher, J. (2008). Intensive intervention for students with mathematics disabilities: seven principles of effective practice. learning disability. Learning Disability Quarterly, 31(2), 79–92. https://doi.org/10.2307/20528819.

    Article  Google Scholar 

  27. Fuhs, M. W., Hornburg, C. B., & McNeil, N. M. (2016). Specific early number skills mediate the association between executive functioning skills and mathematics achievement. Developmental Psychology, 52(8), 1217–1235. https://doi.org/10.1037/dev0000145.

    Article  Google Scholar 

  28. Garon-Carrier, G., Boivin, M., Lemelin, J. P., Kovas, Y., Parent, S., Séguin, J., & Dionne, G. (2018). Early developmental trajectories of number knowledge and math achievement from 4 to 10 years: Low-persistent profile and early-life predictors. Journal of School Psychology, 68, 84–98. https://doi.org/10.1016/j.jsp.2018.02.004.

    Article  Google Scholar 

  29. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510.

    Article  Google Scholar 

  30. Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: an eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. https://doi.org/10.1037/edu0000159.

    Article  Google Scholar 

  31. Gelman, R., & Gallistel, C. R. (1978). The child’s concept of number. Cambridge: Harvard.

    Google Scholar 

  32. Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition. London: Routledge.

    Google Scholar 

  33. Ginsburg, H., Baroody, A.J., del Río, M.C.N., & Guerra, I.L. (2007). TEMA-3: Test de Competencia Matemática Básica. [Test of early mathematics ability]. Madrid:TEA.

  34. Giofrè, D., Donolato, E., & Mammarella, I. C. (2018). Thee differential role of verbal and visuospatial working memory in mathematics and reading. Trends in Neuroscience and Education, 12, 1–6. https://doi.org/10.1016/j.tine.2018.07.001.

    Article  Google Scholar 

  35. Gray, S. A., & Reeve, R. A. (2016). Number-specific and general cognitive markers of preschoolers’ math ability profiles. Journal of Experimental Child Psychology, 147, 1–21. https://doi.org/10.1016/j.jecp.2016.02.004.

    Article  Google Scholar 

  36. Griffin, S. (2004). Building number sense with number worlds: a mathematics program for young children. Early Childhood Research Quarterly, 19, 173–180. https://doi.org/10.1016/j.ecresq.2004.01.012.

    Article  Google Scholar 

  37. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465. https://doi.org/10.1037/a0012682.

    Article  Google Scholar 

  38. Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. (2015). General and math-specific predictors of sixth-graders’ knowledge of fractions. Cognitive Development, 35, 34–49. https://doi.org/10.1016/j.cogdev.2015.02.001.

    Article  Google Scholar 

  39. Harvey, H. A., & Miller, G. E. (2017). Executive function skills, early mathematics, and vocabulary in head start preschool children. Early Education and Development, 28(3), 290–307. https://doi.org/10.1080/10409289.2016.1218728.

    Article  Google Scholar 

  40. Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 272. https://doi.org/10.3389/fpsyg.2014.00272.

  41. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  42. Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59(3), 381–389. https://doi.org/10.1007/BF02296131.

    Article  Google Scholar 

  43. Landerl, K., Freudenthaler, H.H., Heene, M., De Jong, P.F., Desrochers, A., Manolitsis, G., ... & Georgiou, G. K. (2019). Phonological awareness and rapid automatized naming as longitudinal predictors of reading in five alphabetic orthographies with varying degrees of consistency. Scientific Studies of Reading, 23(3), 220-234. https://doi.org/10.1080/10888438.2018.1510936

  44. Lee, K., & Bull, R. (2016). Developmental changes in working memory, updating, and math achievement. Journal of Educational Psychology, 108(6), 869–882. https://doi.org/10.1037/edu0000090.

    Article  Google Scholar 

  45. Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14–20. https://doi.org/10.1016/j.cobeha.2016.04.006.

    Article  Google Scholar 

  46. Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101–109. https://doi.org/10.1016/j.lindif.2009.08.004.

    Article  Google Scholar 

  47. Moore, A. M., vanMarle, K., & Geary, D. C. (2016). Kindergartners’ fluent processing of symbolic numerical magnitude is predicted by their cardinal knowledge and implicit understanding of arithmetic 2 years earlier. Journal of Experimental Child Psychology, 150, 31–47. https://doi.org/10.1016/j.jecp.2016.05.003.

    Article  Google Scholar 

  48. Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and non-symbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502. https://doi.org/10.1016/j.jecp.2009.02.003.

    Article  Google Scholar 

  49. Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., Menacho, I. & Van Luit, H. (2012). Longitudinal study of low and high achievers in early mathematics. British Journal of Educational Psychology, 82, 28–41. https://doi.org/10.1111/j.2044-8279.2011.02043.x

  50. National Research Council. (2009). Mathematics learning in early childhood: paths toward excellence and equity. Washington: The National Academies Press.

    Google Scholar 

  51. Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., et al. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Childhood Research Quarterly, 36, 550–560. https://doi.org/10.1016/J.ECRESQ.2016.02.003.

    Article  Google Scholar 

  52. Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and non-symbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS One, 8(7), e67918. https://doi.org/10.1371/journal.pone.0067918.

    Article  Google Scholar 

  53. Östergren, R., & Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115(3), 405–421. https://doi.org/10.1016/j.jecp.2013.03.007.

    Article  Google Scholar 

  54. Paliwal, V., & Baroody, A. J. (2018). How best to teach the cardinality principle? Early Childhood Research Quarterly, 44, 152–160. https://doi.org/10.1016/j.ecresq.2018.03.012.

    Article  Google Scholar 

  55. Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293. https://doi.org/10.1016/j.jecp.2016.07.011.

    Article  Google Scholar 

  56. Passolunghi, M. C., & Costa, H. M. (2014). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22(1), 81–98. https://doi.org/10.1080/09297049.2014.971726.

    Article  Google Scholar 

  57. Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of mathematical achievement: a longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42–63. https://doi.org/10.1111/j.2044-8279.2011.02039.x.

    Article  Google Scholar 

  58. Passolunghi, M. C., Lanfranchi, S., Altoè, G., & Sollazzo, N. (2015). Early numerical abilities and cognitive skills in kindergarten children. Journal of Experimental Child Psychology, 135, 25–42. https://doi.org/10.1016/j.jecp.2015.02.001.

    Article  Google Scholar 

  59. Passolunhgi, M. C., & Costa, H. M. (2019). Working memory and mathematical learning. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties (pp. 407–421). New York: Springer. doi. https://doi.org/10.1007/978-3-319-97148-3_9.

    Google Scholar 

  60. Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: is there a difference between verbal domain and numerical domain? Journal of Learning Disabilities, 49, 3–20. https://doi.org/10.1177/0022219414521667.

    Article  Google Scholar 

  61. Purpura, D. J., & Ganley, C. M. (2014). Working memory and language: skill-specific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122, 104–121. https://doi.org/10.1016/j.jecp.2013.12.009.

    Article  Google Scholar 

  62. Purpura, D. J., Day, E., Napoli, A. R., & Hart, S. A. (2017). Identifying domain-general and domain-specific predictors of low mathematics performance: a classification and regression tree analysis. Journal of Numerical Cognition, 3(2), 365–399. https://doi.org/10.5964/jnc.v3i2.53.

    Article  Google Scholar 

  63. Raghubar, K. P., & Barnes, M. A. (2017). Early numeracy skills in preschool-aged children: a review of neurocognitive findings and implications for assessment and intervention. The Clinical Neuropsychologist, 31(2), 329–351. https://doi.org/10.1080/13854046.2016.1259387.

    Article  Google Scholar 

  64. Reeve, R. A., & Gray, S. A. (2015). Number difficulties in young children: deficits in core number? In S. Chinn (Ed.), The international handbook for mathematical difficulties and dyscalculia (pp. 44–59). London: Routledge.

    Google Scholar 

  65. Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649–666. https://doi.org/10.1037/a0027520.

    Article  Google Scholar 

  66. Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344–357. https://doi.org/10.1111/j.2044-835X.2011.02048.x.

    Article  Google Scholar 

  67. Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: what underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431. https://doi.org/10.1016/j.jecp.2012.10.012.

    Article  Google Scholar 

  68. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372.

    Article  Google Scholar 

  69. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. https://doi.org/10.1111/j.1467-8624.2004.00684.x.

    Article  Google Scholar 

  70. Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144–150. https://doi.org/10.1111/cdep.12077.

    Article  Google Scholar 

  71. Szkudlarek, E., & Brannon, E. M. (2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9. doi:https://doi.org/10.3389/fpsyg.2018.00606

  72. Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a mathematical processing network in 9-year-old children. Developmental Science, 17(4), 506–524. https://doi.org/10.1111/desc.12144.

    Article  Google Scholar 

  73. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learning and Individual Differences, 37, 153–160. https://doi.org/10.1016/j.lindif.2014.12.004.

    Article  Google Scholar 

  74. Vanbinst, K., Ansari, D., Ghesquière, P., & De Smedt, B. (2016). Symbolic numerical magnitude processing is as important to arithmetic as phonological awareness is to reading. PLoS One, 11(3), e0151045. https://doi.org/10.1371/journal.pone.0151045.

    Article  Google Scholar 

  75. Vanbinst, K., Ceulemans, E., Peters, L., Ghesquière, P., & De Smedt, B. (2018). Developmental trajectories of children’s symbolic numerical magnitude processing skills and associated cognitive competencies. Journal of Experimental Child Psychology, 166, 232–250. https://doi.org/10.1016/j.jecp.2017.08.008.

    Article  Google Scholar 

  76. Watson, S.M., Gable, R.A., & Morin, L.L. (2016). The role of executive functions in classroom instruction of students with learning disabilities. International Journal of School and Cognitive Psychology, 3(167). https://doi.org/10.4172/2469-9837.1000167.

  77. Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s past is prologue: relations between early mathematics knowledge and high school. Educational Researcher, 43, 352–360. https://doi.org/10.3102/0013189X14553660.

    Article  Google Scholar 

  78. Wechsler, D. (2009). WPPSI-III, Escala de Inteligencia de Wechsler para Preescolar y Primaria–III. [Wechsler Preschool and Primary Scale of Intelligence-III]. Madrid: TEA.

    Google Scholar 

  79. Xenidou-Dervou, I., Van Luit, J. E. H., Kroesbergen, E. H., Friso-van den Bos, I., Jonkman, L. M., van der Schoot, M., et al. (2018). Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Developmental Science, 21(6), e12671. https://doi.org/10.1111/desc.12671.

    Article  Google Scholar 

Download references

Funding

This work was supported by the MINECO (FEDER) Spanish Government project [PSI2015-63856-P] and FONDECYT Regular 1191064, Chilean Government and Pia-conicyt Basal Funds for Centers of Excellence Project FB0003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose I. Navarro.

Ethics declarations

Upon being granted permission to proceed and prior to starting the assessments, written informed consent of the parents (in accordance with the Declaration of Helsinki and Singapore Statement) was obtained.

Additional information

Estibaliz Aragon. Department of Psychology, University of Cadiz, Campus Rio San Pedro, 11519, Puerto Real, Cadiz, Spain. E-mail: estivaliz.aragon@uca.es

Current theme of research:

Early math cognition

Most relevant publications in the field of Psychology of Education:

Aragon, E., Cerda, G., Delgado, C., Aguilar, M. & Navarro, J.I. (2019). Individual differences in general and specific cognitive precursors in early mathematical learning. Psicothema, 31 (2), 156-162.

Cerda, G., Aragon, E., Perez Wilson, C., Navarro, J.I. & Aguilar, M. (2018). The open algorithm based on numbers (ABN) method: an effective instructional approach to domain-specific precursors of arithmetic development. Frontiers in Psychology, 9: 1811

Gamal Cerda. Department of Educative Methodology and Educational Computers Science, University of Concepcion, Víctor Lamas 1290, Concepción, Chile. E-mail: gacerda@udec.cl

Current theme of research:

Mathematical learning

Most relevant publications in the field of Psychology of Education:

Cerda, G., Pérez, C., Navarro, J.I., Aguilar, M., Casas, J. and Aragón, E. (2015). Explanatory model of emotional-cognitive variables in school mathematics performance: a longitudinal study. Frontiers in Psychology, 6, 1363, 1-10.

Cerda, G., Pérez, C y Ortega, R. (2014). Relationship between early mathematical competence, gender and social background in Chilean elementary school population. Anales de Psicología, 30 (3), 1006-1013.

Manuel Aguilar. Department of Psychology, University of Cadiz, Campus Rio San Pedro, 11519, Puerto Real, Cadiz, Spain. E-mail: manuel.aguilar@uca.es

Current theme of research:

Mathematical learning difficulties

Most relevant publications in the field of Psychology of Education:

Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., Menacho, I. & Van Luit, H. (2012). Longitudinal study of low and high achievers in early mathematics. British Journal of Educational Psychology, 82, 28-41.

Aguilar, M., Navarro, J.I., Menacho, I., Alcalde, C. & Ramiro, P. (2010). Naming speed, phonological awareness and reading. Psicothema, 22, 436-442.

Navarro, J.I., Ramiro, P., Lopez, J.M., Aguilar, M., Acosta, M., & Montero, J. (2006). Mental attention in gifted and nongifted children. European Journal of Psychology of Education, 21(4), 401-411.

Carlos Mera. Department of Psychology, University of Cadiz, Campus Rio San Pedro, 11519, Puerto Real, Cadiz, Spain. E-mail: carlos.mera@uca.es

Current theme of research:

Early math cognition and computer design

Most relevant publications in the field of Psychology of Education:

Mera, C., Ruiz, G., Aguilar, M., Aragón, E., Delgado, C., Menacho, I., Marchena, E., García, M. & Navarro, J.I. (2019). Coming together: R&D and children’s entertainment company in designing APPs for learning early math. Frontiers in Psychology, 9, 2751

Jose I. Navarro. Department of Psychology, University of Cadiz, Campus Rio San Pedro, 11519, Puerto Real, Cadiz, Spain. E-mail: jose.navarro@uca.es. Web site: https://hum634.uca.es/jose-i-navarro/

Current theme of research:

Early math cognition and computer design

Most relevant publications in the field of Psychology of Education:

Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., Menacho, I. & Van Luit, H. (2012). Longitudinal study of low and high achievers in early mathematics. British Journal of Educational Psychology, 82, 28-41.

Navarro, J.I., Aguilar, M., Alcalde, C., Ruiz, G., Marchena, E. & Menacho, I. (2011). Inhibitory processes, working memory, phonological awareness, naming speed, and early arithmetic achievement. Spanish Journal of Psychology, 14(2), 580-588.

Navarro, J.I., Ramiro, P., Lopez, J.M., Aguilar, M., Acosta, M., & Montero, J. (2006). Mental attention in gifted and nongifted children. European Journal of Psychology of Education, 21(4), 401-411.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aragón, E., Cerda, G., Aguilar, M. et al. Modulation of general and specific cognitive precursors to early mathematical competencies in preschool children. Eur J Psychol Educ (2020). https://doi.org/10.1007/s10212-020-00483-4

Download citation

Keywords

  • Early mathematical achievement
  • General-domain precursors
  • Specific-domain precursors
  • Mathematical cognition
  • Structural equation model
  • preschool education