European Journal of Psychology of Education

, Volume 34, Issue 4, pp 783–799 | Cite as

The worlds’ game: collective language manipulation as a space to develop logical abilities in a primary school classroom

  • Cristina CoppolaEmail author
  • Monica Mollo
  • Tiziana Pacelli


This paper presents a Vygotskian research device that focuses on collaborative activities based on the manipulation of linguistic objects in a primary school classroom, with 8–9-year-old children. Through social exchanges among the different points of view, the children were engaged in a dynamic process of building and negotiating mathematical meanings. How the children may become aware of the possibility that the same language can have different interpretations as well as some aspects of the distinction between syntax and semantic is analyzed. The analyzed activity is the “worlds’ game,” the final step of a didactic path based on the construction and manipulation of a procedural language. The content analysis of the elicitation interviews allows to reconstruct children’s reasoning, individually developed during and after the activities. From a qualitative analysis, it emerges how almost all the children reached a good level of awareness and mastery about the possibility that the same language can have different interpretations and, therefore, about some aspects of the difference between syntax and semantics.


Language Syntax and semantics Social interactions Manipulation 



  1. Bakhtin, M. M. (1981). The dialogical imagination: four essays by M.M. Bakhtin. Austin: University of Texas Press.Google Scholar
  2. Berelson, B. (1952). Content analysis in communication research. Glencoe Ill: Free Press.Google Scholar
  3. Blanchet, A. (1985). L’entretien dans les sciences socials: l’écoute la parole et le sens. Paris: Bordas.Google Scholar
  4. Bruner, J. S. (1990). Acts of meaning. Cambridge: Harvard University Press.Google Scholar
  5. Bussi, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective (pp. 746–783). New York: Handbook of International Research in Mathematics Education.Google Scholar
  6. Cesari Lusso, V., Iannaccone, A., & Mollo, M. (2015). Tacit knowledge and opaque action. In G. Marsico, R. Ruggieri, & S. Salvatore (Eds.), The yearbook of idiographic science (Vol. 6, pp. 273–290). Charlotte: Information Age Publishing.Google Scholar
  7. Coppola, C., Mollo, M., & Pacelli, T. (2011a). An experience of social rising of logical tools: the role of language. International Journal for Mathematics Teaching and Learning.Google Scholar
  8. Coppola, C., Mollo, M., & Pacelli T. (2011b). The concept of equivalence in a socially constructed language in a primary school class. In: M Pytlak, T Roland, E Swoboda, Proceedings of CERME 7,2011, Rzeszów.Google Scholar
  9. Coppola, C., Mollo, M. & Pacelli, T. (2014). Manipolazione di un linguaggio socialmente costruito in una classe di scuola primaria: costruzione del concetto di equivalenza. L’insegnamento della matematica e delle scienze integrate, vol. 37 A, no. 1, 7–33.Google Scholar
  10. Durand-Guerrier, V. (2014). Logic in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 361–364). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Ferrari, P.L. (2002). Developing language through communication and conversion of semiotic systems. In: A.D. Cockburn & E. Nardi (Eds.), Proc. of the 26th Conf. of the Intern. Group for the Psychology of Math. Ed. Norwich (UK), 2, 353–360.Google Scholar
  12. Ferrari, P.L. (2004). Mathematical language and advanced mathematics learning. In: Johnsen Høines, M. & Berit Fuglestad, A. (Eds.), Proceedings of the 28th Conference of the Intern.l Group for the Psychology of Math, Ed., Bergen (Norway), 2, 383–390.Google Scholar
  13. Ferrari, P. L., & Gerla, G. (2015). Logica e didattica della matematica. In H. Hosni, G. Lolli, & C. Toffalori (Eds.), Le direzioni della ricerca logica in Italia (pp. 143–184). Pisa: Edizioni della Normale.Google Scholar
  14. Gerla, G. (1988). L’insegnamento della logica nelle scuole elementari e medie. La logica matematica nella didattica, Atti del XII Incontro AILA.Google Scholar
  15. Gerla, G., Sestito, L., & Vescia, S. (1990). Linguaggi algebrico-procedurali nella scuola elementare: un progetto di ricerca. La matematica e la sua didattica, 4, 39–48.Google Scholar
  16. Grossen, M., Liengme Bessire, M.-J., & Perret-Clermont, A.-N. (1997). Construction de l’interaction et dynamiques socio-cognitives. In M. Grossen & B. Py (Eds.), Pratiques sociales et médiations symboliques (pp. 221–247). Berne: Peter Lang.Google Scholar
  17. Halliday, M. A. K. (1985). An introduction to functional grammar. London: Arnold.Google Scholar
  18. Iannaccone, A. (2010). Le condizioni sociali del pensiero. Contesti, attività e ricerca di senso. Milano: Edizioni Unicopli.Google Scholar
  19. Iannaccone, A. & Cattaruzza, E. (2015). Le vécu subjectif dans la recherche en psychologie. Considerations theoriques et methodologiques. Recherche et Formation, (3), 77-90.Google Scholar
  20. Iannaccone, A., & Zittoun, T. (2014). Overview: the activity of thinking on social spaces. In T. Zittoun & A. Iannaccone (Eds.), Activities of thinking in social spaces (pp. 1–12). New York: Nova Science Publishers.Google Scholar
  21. Jefferson, G. (1985). An exercise in the transcription and analysis of laughter. In T. Van Dijk (Ed.), Handbook of discourse analysis (Vol. 3). London: Academic Press.Google Scholar
  22. Liljedahl, P., & Zazkis, R. (2009). Teaching mathematics as storytelling. Rotterdam: Sense Publishers.Google Scholar
  23. Muller Mirza, N., & Perret-Clermont, A.-N. (2008). Dynamiques interactives, apprentissages et médiations: analyses de constructions de sens autour d’un outil pour argumenter. In L. Filliétaz & M.-L. Schubauer-Leoni (Eds.), Processus interactionnels et situations éducatives (pp. 231–254). Bruxelles: De Boek.Google Scholar
  24. Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.Google Scholar
  25. Perret-Clermont, A.-N. (1980). Social interaction and cognitive development in children. London: Academic.Google Scholar
  26. Perret-Clermont, A.-N. (2004). The thinking spaces of the young. In A.-N. Perret-Clermont, C. Pontecorvo, L. Resnick, T. Zittoun, & B. Burge (Eds.), Joining society: social interactions and learning in adolescence and youth (pp. 3–10). New York: Cambridge University Press.Google Scholar
  27. Perret-Clermont, A.-N. (2015). The architecture of social relationships and thinking spaces for growth. In C. Psaltis, A. Gillespie, & A.-N. Perret-Clermont (Eds.), Social relations in human and societal development (pp. 51–70). Basingstokes: Palgrave Macmillan.CrossRefGoogle Scholar
  28. Perret-Clermont, A.-N., & Nicolet, M. (2001). Interagir et connaître. Enjeux et régulations sociales dans le développement cognitif. Paris: L’Harmattan.Google Scholar
  29. Piaget, J. (1974). La prise de conscience (p. 1974). Paris: PUF.Google Scholar
  30. Planas, N., Morgan, C., & Schütte, M. (2018). Mathematics and language: lessons and directions from two decades of research. ERME Handbook. Abingdon: Routledge.Google Scholar
  31. Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: a semiotic analysis. Educational Studies in Mathematics, 42(3), 237–268.CrossRefGoogle Scholar
  32. Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On embodiment, artifacts, and signs: a semiotic cultural perspective of mathematical thinking. In H. L. Chick & J. L. Vincent (Eds.), Proc. of the 29 th Conf. of the Intern. Group for the Psychology of Math. Education (Vol. 4, pp. 113–120). Melbourne: PME.Google Scholar
  33. Schubauer-Leoni, M. L., & Perret-Clermont, A. N. (1997). Social interactions and mathematics learning. In P. Bryant & T. Nunes (Eds.), Learning and teaching mathematics. An international perspective (Vol. 11, pp. 265–283). London: Psychology Press.Google Scholar
  34. Sfard, A. (2001). There is more to discourse than meets the ears: looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46(1–3), 13–57.CrossRefGoogle Scholar
  35. Steinbring, H. (2006). What makes a sign a mathematical sign?-an epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.CrossRefGoogle Scholar
  36. Vermersch, P. (1994). L’entretien d’explicitation. Paris: ESF.Google Scholar
  37. Vermersch, P. (2012). Explicitation et phénoménologie. Paris: Presses Universitaires de France.Google Scholar
  38. Vygotsky, L. S. (1934). Thought and language. Moscow-Leningrad: Sozekgiz.Google Scholar
  39. Vygotsky, L. S. (1978). Mind in society The development of higher psychological processes. Cambridge: Harvard University Press.Google Scholar
  40. Wartofsky, M. (1979). Models. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  41. Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. The Journal of Child Psychology and Psychiatry, 17(2), 89–100.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di SalernoFiscianoItaly
  2. 2.Dipartimento di Scienze Umane, Filosofiche e della FormazioneUniversità degli Studi di SalernoFiscianoItaly

Personalised recommendations